Metamath Proof Explorer


Theorem mreincl

Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion mreincl C Moore X A C B C A B C

Proof

Step Hyp Ref Expression
1 intprg A C B C A B = A B
2 1 3adant1 C Moore X A C B C A B = A B
3 simp1 C Moore X A C B C C Moore X
4 prssi A C B C A B C
5 4 3adant1 C Moore X A C B C A B C
6 prnzg A C A B
7 6 3ad2ant2 C Moore X A C B C A B
8 mreintcl C Moore X A B C A B A B C
9 3 5 7 8 syl3anc C Moore X A C B C A B C
10 2 9 eqeltrrd C Moore X A C B C A B C