Database
BASIC STRUCTURES
Moore spaces
mreincl
Next ⟩
mreuni
Metamath Proof Explorer
Ascii
Unicode
Theorem
mreincl
Description:
Two closed sets have a closed intersection.
(Contributed by
Stefan O'Rear
, 30-Jan-2015)
Ref
Expression
Assertion
mreincl
⊢
C
∈
Moore
⁡
X
∧
A
∈
C
∧
B
∈
C
→
A
∩
B
∈
C
Proof
Step
Hyp
Ref
Expression
1
intprg
⊢
A
∈
C
∧
B
∈
C
→
⋂
A
B
=
A
∩
B
2
1
3adant1
⊢
C
∈
Moore
⁡
X
∧
A
∈
C
∧
B
∈
C
→
⋂
A
B
=
A
∩
B
3
simp1
⊢
C
∈
Moore
⁡
X
∧
A
∈
C
∧
B
∈
C
→
C
∈
Moore
⁡
X
4
prssi
⊢
A
∈
C
∧
B
∈
C
→
A
B
⊆
C
5
4
3adant1
⊢
C
∈
Moore
⁡
X
∧
A
∈
C
∧
B
∈
C
→
A
B
⊆
C
6
prnzg
⊢
A
∈
C
→
A
B
≠
∅
7
6
3ad2ant2
⊢
C
∈
Moore
⁡
X
∧
A
∈
C
∧
B
∈
C
→
A
B
≠
∅
8
mreintcl
⊢
C
∈
Moore
⁡
X
∧
A
B
⊆
C
∧
A
B
≠
∅
→
⋂
A
B
∈
C
9
3
5
7
8
syl3anc
⊢
C
∈
Moore
⁡
X
∧
A
∈
C
∧
B
∈
C
→
⋂
A
B
∈
C
10
2
9
eqeltrrd
⊢
C
∈
Moore
⁡
X
∧
A
∈
C
∧
B
∈
C
→
A
∩
B
∈
C