Metamath Proof Explorer


Theorem mreintcl

Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion mreintcl C Moore X S C S S C

Proof

Step Hyp Ref Expression
1 elpw2g C Moore X S 𝒫 C S C
2 1 biimpar C Moore X S C S 𝒫 C
3 2 3adant3 C Moore X S C S S 𝒫 C
4 ismre C Moore X C 𝒫 X X C s 𝒫 C s s C
5 4 simp3bi C Moore X s 𝒫 C s s C
6 5 3ad2ant1 C Moore X S C S s 𝒫 C s s C
7 simp3 C Moore X S C S S
8 neeq1 s = S s S
9 inteq s = S s = S
10 9 eleq1d s = S s C S C
11 8 10 imbi12d s = S s s C S S C
12 11 rspcva S 𝒫 C s 𝒫 C s s C S S C
13 12 3impia S 𝒫 C s 𝒫 C s s C S S C
14 3 6 7 13 syl3anc C Moore X S C S S C