Metamath Proof Explorer


Theorem mrelatglb0

Description: The empty intersection in a Moore space is realized by the base set. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypotheses mreclat.i I = toInc C
mrelatglb.g G = glb I
Assertion mrelatglb0 C Moore X G = X

Proof

Step Hyp Ref Expression
1 mreclat.i I = toInc C
2 mrelatglb.g G = glb I
3 eqid I = I
4 1 ipobas C Moore X C = Base I
5 2 a1i C Moore X G = glb I
6 1 ipopos I Poset
7 6 a1i C Moore X I Poset
8 0ss C
9 8 a1i C Moore X C
10 mre1cl C Moore X X C
11 ral0 x X I x
12 11 rspec x X I x
13 12 adantl C Moore X x X I x
14 mress C Moore X y C y X
15 10 adantr C Moore X y C X C
16 1 3 ipole C Moore X y C X C y I X y X
17 15 16 mpd3an3 C Moore X y C y I X y X
18 14 17 mpbird C Moore X y C y I X
19 18 3adant3 C Moore X y C x y I x y I X
20 3 4 5 7 9 10 13 19 posglbdg C Moore X G = X