Metamath Proof Explorer


Theorem mrelatglbALT

Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015) (Proof shortened by Zhi Wang, 29-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mreclatGOOD.i I = toInc C
mrelatglbALT.g G = glb I
Assertion mrelatglbALT C Moore X U C U G U = U

Proof

Step Hyp Ref Expression
1 mreclatGOOD.i I = toInc C
2 mrelatglbALT.g G = glb I
3 simp1 C Moore X U C U C Moore X
4 simp2 C Moore X U C U U C
5 2 a1i C Moore X U C U G = glb I
6 mreintcl C Moore X U C U U C
7 unimax U C x C | x U = U
8 7 eqcomd U C U = x C | x U
9 6 8 syl C Moore X U C U U = x C | x U
10 1 3 4 5 9 6 ipoglb C Moore X U C U G U = U