Metamath Proof Explorer


Theorem mrelatglbALT

Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015) (Proof shortened by Zhi Wang, 29-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mreclatGOOD.i I=toIncC
mrelatglbALT.g G=glbI
Assertion mrelatglbALT CMooreXUCUGU=U

Proof

Step Hyp Ref Expression
1 mreclatGOOD.i I=toIncC
2 mrelatglbALT.g G=glbI
3 simp1 CMooreXUCUCMooreX
4 simp2 CMooreXUCUUC
5 2 a1i CMooreXUCUG=glbI
6 mreintcl CMooreXUCUUC
7 unimax UCxC|xU=U
8 7 eqcomd UCU=xC|xU
9 6 8 syl CMooreXUCUU=xC|xU
10 1 3 4 5 9 6 ipoglb CMooreXUCUGU=U