Step |
Hyp |
Ref |
Expression |
1 |
|
mreclat.i |
|
2 |
|
mrelatlub.f |
|
3 |
|
mrelatlub.l |
|
4 |
|
eqid |
|
5 |
1
|
ipobas |
|
6 |
5
|
adantr |
|
7 |
3
|
a1i |
|
8 |
1
|
ipopos |
|
9 |
8
|
a1i |
|
10 |
|
simpr |
|
11 |
|
uniss |
|
12 |
11
|
adantl |
|
13 |
|
mreuni |
|
14 |
13
|
adantr |
|
15 |
12 14
|
sseqtrd |
|
16 |
2
|
mrccl |
|
17 |
15 16
|
syldan |
|
18 |
|
elssuni |
|
19 |
2
|
mrcssid |
|
20 |
15 19
|
syldan |
|
21 |
18 20
|
sylan9ssr |
|
22 |
|
simpll |
|
23 |
10
|
sselda |
|
24 |
17
|
adantr |
|
25 |
1 4
|
ipole |
|
26 |
22 23 24 25
|
syl3anc |
|
27 |
21 26
|
mpbird |
|
28 |
|
simp1l |
|
29 |
|
simplll |
|
30 |
|
simplr |
|
31 |
30
|
sselda |
|
32 |
|
simplr |
|
33 |
1 4
|
ipole |
|
34 |
29 31 32 33
|
syl3anc |
|
35 |
34
|
biimpd |
|
36 |
35
|
ralimdva |
|
37 |
36
|
3impia |
|
38 |
|
unissb |
|
39 |
37 38
|
sylibr |
|
40 |
|
simp2 |
|
41 |
2
|
mrcsscl |
|
42 |
28 39 40 41
|
syl3anc |
|
43 |
17
|
3ad2ant1 |
|
44 |
1 4
|
ipole |
|
45 |
28 43 40 44
|
syl3anc |
|
46 |
42 45
|
mpbird |
|
47 |
4 6 7 9 10 17 27 46
|
poslubdg |
|