Metamath Proof Explorer


Theorem mrelatlubALT

Description: Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015) (Proof shortened by Zhi Wang, 29-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mreclatGOOD.i I = toInc C
mrelatlubALT.f F = mrCls C
mrelatlubALT.l L = lub I
Assertion mrelatlubALT C Moore X U C L U = F U

Proof

Step Hyp Ref Expression
1 mreclatGOOD.i I = toInc C
2 mrelatlubALT.f F = mrCls C
3 mrelatlubALT.l L = lub I
4 simpl C Moore X U C C Moore X
5 simpr C Moore X U C U C
6 3 a1i C Moore X U C L = lub I
7 mreuniss C Moore X U C U X
8 2 mrcval C Moore X U X F U = x C | U x
9 7 8 syldan C Moore X U C F U = x C | U x
10 2 mrccl C Moore X U X F U C
11 7 10 syldan C Moore X U C F U C
12 1 4 5 6 9 11 ipolub C Moore X U C L U = F U