Metamath Proof Explorer


Theorem mremre

Description: The Moore collections of subsets of a space, viewed as a kind of subset of the power set, form a Moore collection in their own right on the power set. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion mremre X V Moore X Moore 𝒫 X

Proof

Step Hyp Ref Expression
1 mresspw a Moore X a 𝒫 X
2 velpw a 𝒫 𝒫 X a 𝒫 X
3 1 2 sylibr a Moore X a 𝒫 𝒫 X
4 3 ssriv Moore X 𝒫 𝒫 X
5 4 a1i X V Moore X 𝒫 𝒫 X
6 ssidd X V 𝒫 X 𝒫 X
7 pwidg X V X 𝒫 X
8 intssuni2 a 𝒫 X a a 𝒫 X
9 8 3adant1 X V a 𝒫 X a a 𝒫 X
10 unipw 𝒫 X = X
11 9 10 sseqtrdi X V a 𝒫 X a a X
12 elpw2g X V a 𝒫 X a X
13 12 3ad2ant1 X V a 𝒫 X a a 𝒫 X a X
14 11 13 mpbird X V a 𝒫 X a a 𝒫 X
15 6 7 14 ismred X V 𝒫 X Moore X
16 n0 a b b a
17 intss1 b a a b
18 17 adantl X V a Moore X b a a b
19 simpr X V a Moore X a Moore X
20 19 sselda X V a Moore X b a b Moore X
21 mresspw b Moore X b 𝒫 X
22 20 21 syl X V a Moore X b a b 𝒫 X
23 18 22 sstrd X V a Moore X b a a 𝒫 X
24 23 ex X V a Moore X b a a 𝒫 X
25 24 exlimdv X V a Moore X b b a a 𝒫 X
26 16 25 syl5bi X V a Moore X a a 𝒫 X
27 26 3impia X V a Moore X a a 𝒫 X
28 simp2 X V a Moore X a a Moore X
29 28 sselda X V a Moore X a b a b Moore X
30 mre1cl b Moore X X b
31 29 30 syl X V a Moore X a b a X b
32 31 ralrimiva X V a Moore X a b a X b
33 elintg X V X a b a X b
34 33 3ad2ant1 X V a Moore X a X a b a X b
35 32 34 mpbird X V a Moore X a X a
36 simp12 X V a Moore X a b a b a Moore X
37 36 sselda X V a Moore X a b a b c a c Moore X
38 simpl2 X V a Moore X a b a b c a b a
39 intss1 c a a c
40 39 adantl X V a Moore X a b a b c a a c
41 38 40 sstrd X V a Moore X a b a b c a b c
42 simpl3 X V a Moore X a b a b c a b
43 mreintcl c Moore X b c b b c
44 37 41 42 43 syl3anc X V a Moore X a b a b c a b c
45 44 ralrimiva X V a Moore X a b a b c a b c
46 intex b b V
47 elintg b V b a c a b c
48 46 47 sylbi b b a c a b c
49 48 3ad2ant3 X V a Moore X a b a b b a c a b c
50 45 49 mpbird X V a Moore X a b a b b a
51 27 35 50 ismred X V a Moore X a a Moore X
52 5 15 51 ismred X V Moore X Moore 𝒫 X