Metamath Proof Explorer


Theorem mrerintcl

Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion mrerintcl C Moore X S C X S C

Proof

Step Hyp Ref Expression
1 rint0 S = X S = X
2 1 adantl C Moore X S C S = X S = X
3 mre1cl C Moore X X C
4 3 ad2antrr C Moore X S C S = X C
5 2 4 eqeltrd C Moore X S C S = X S C
6 simp2 C Moore X S C S S C
7 mresspw C Moore X C 𝒫 X
8 7 3ad2ant1 C Moore X S C S C 𝒫 X
9 6 8 sstrd C Moore X S C S S 𝒫 X
10 simp3 C Moore X S C S S
11 rintn0 S 𝒫 X S X S = S
12 9 10 11 syl2anc C Moore X S C S X S = S
13 mreintcl C Moore X S C S S C
14 12 13 eqeltrd C Moore X S C S X S C
15 14 3expa C Moore X S C S X S C
16 5 15 pm2.61dane C Moore X S C X S C