Step |
Hyp |
Ref |
Expression |
1 |
|
mrieqvd.1 |
|
2 |
|
mrieqvd.2 |
|
3 |
|
mrieqvd.3 |
|
4 |
|
mrieqvd.4 |
|
5 |
|
pssnel |
|
6 |
5
|
3ad2ant3 |
|
7 |
1
|
3ad2ant1 |
|
8 |
7
|
adantr |
|
9 |
|
simprr |
|
10 |
|
difsnb |
|
11 |
9 10
|
sylib |
|
12 |
|
simpl3 |
|
13 |
12
|
pssssd |
|
14 |
13
|
ssdifd |
|
15 |
11 14
|
eqsstrrd |
|
16 |
|
simpl2 |
|
17 |
3 8 16
|
mrissd |
|
18 |
17
|
ssdifssd |
|
19 |
8 2 15 18
|
mrcssd |
|
20 |
|
difssd |
|
21 |
8 2 20 17
|
mrcssd |
|
22 |
8 2 17
|
mrcssidd |
|
23 |
|
simprl |
|
24 |
22 23
|
sseldd |
|
25 |
2 3 8 16 23
|
ismri2dad |
|
26 |
21 24 25
|
ssnelpssd |
|
27 |
19 26
|
sspsstrd |
|
28 |
6 27
|
exlimddv |
|
29 |
28
|
3expia |
|
30 |
29
|
alrimiv |
|
31 |
30
|
ex |
|
32 |
1
|
adantr |
|
33 |
32
|
elfvexd |
|
34 |
4
|
adantr |
|
35 |
33 34
|
ssexd |
|
36 |
35
|
difexd |
|
37 |
|
simp1r |
|
38 |
|
difsnpss |
|
39 |
37 38
|
sylib |
|
40 |
|
simp2 |
|
41 |
40
|
psseq1d |
|
42 |
39 41
|
mpbird |
|
43 |
|
simp3 |
|
44 |
42 43
|
mpd |
|
45 |
40
|
fveq2d |
|
46 |
45
|
psseq1d |
|
47 |
44 46
|
mpbid |
|
48 |
47
|
3expia |
|
49 |
36 48
|
spcimdv |
|
50 |
49
|
3impia |
|
51 |
50
|
pssned |
|
52 |
51
|
3com23 |
|
53 |
1
|
3ad2ant1 |
|
54 |
4
|
3ad2ant1 |
|
55 |
|
simp3 |
|
56 |
53 2 54 55
|
mrieqvlemd |
|
57 |
56
|
necon3bbid |
|
58 |
52 57
|
mpbird |
|
59 |
58
|
3expia |
|
60 |
59
|
ralrimiv |
|
61 |
60
|
ex |
|
62 |
2 3 1 4
|
ismri2d |
|
63 |
61 62
|
sylibrd |
|
64 |
31 63
|
impbid |
|