Metamath Proof Explorer


Theorem mrissmrcd

Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd , and so are equal by mrieqv2d .) (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrissmrcd.1 φ A Moore X
mrissmrcd.2 N = mrCls A
mrissmrcd.3 I = mrInd A
mrissmrcd.4 φ S N T
mrissmrcd.5 φ T S
mrissmrcd.6 φ S I
Assertion mrissmrcd φ S = T

Proof

Step Hyp Ref Expression
1 mrissmrcd.1 φ A Moore X
2 mrissmrcd.2 N = mrCls A
3 mrissmrcd.3 I = mrInd A
4 mrissmrcd.4 φ S N T
5 mrissmrcd.5 φ T S
6 mrissmrcd.6 φ S I
7 1 2 4 5 mressmrcd φ N S = N T
8 pssne N T N S N T N S
9 8 necomd N T N S N S N T
10 9 necon2bi N S = N T ¬ N T N S
11 7 10 syl φ ¬ N T N S
12 3 1 6 mrissd φ S X
13 1 2 3 12 mrieqv2d φ S I s s S N s N S
14 6 13 mpbid φ s s S N s N S
15 6 5 ssexd φ T V
16 simpr φ s = T s = T
17 16 psseq1d φ s = T s S T S
18 16 fveq2d φ s = T N s = N T
19 18 psseq1d φ s = T N s N S N T N S
20 17 19 imbi12d φ s = T s S N s N S T S N T N S
21 15 20 spcdv φ s s S N s N S T S N T N S
22 14 21 mpd φ T S N T N S
23 11 22 mtod φ ¬ T S
24 sspss T S T S T = S
25 5 24 sylib φ T S T = S
26 25 ord φ ¬ T S T = S
27 23 26 mpd φ T = S
28 27 eqcomd φ S = T