Metamath Proof Explorer


Theorem mrissmrid

Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrissmrid.1 φ A Moore X
mrissmrid.2 N = mrCls A
mrissmrid.3 I = mrInd A
mrissmrid.4 φ S I
mrissmrid.5 φ T S
Assertion mrissmrid φ T I

Proof

Step Hyp Ref Expression
1 mrissmrid.1 φ A Moore X
2 mrissmrid.2 N = mrCls A
3 mrissmrid.3 I = mrInd A
4 mrissmrid.4 φ S I
5 mrissmrid.5 φ T S
6 3 1 4 mrissd φ S X
7 5 6 sstrd φ T X
8 2 3 1 6 ismri2d φ S I x S ¬ x N S x
9 4 8 mpbid φ x S ¬ x N S x
10 5 sseld φ x T x S
11 5 ssdifd φ T x S x
12 6 ssdifssd φ S x X
13 1 2 11 12 mrcssd φ N T x N S x
14 13 ssneld φ ¬ x N S x ¬ x N T x
15 10 14 imim12d φ x S ¬ x N S x x T ¬ x N T x
16 15 ralimdv2 φ x S ¬ x N S x x T ¬ x N T x
17 9 16 mpd φ x T ¬ x N T x
18 2 3 1 7 17 ismri2dd φ T I