Metamath Proof Explorer


Theorem mrisval

Description: Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrisval.1 N = mrCls A
mrisval.2 I = mrInd A
Assertion mrisval A Moore X I = s 𝒫 X | x s ¬ x N s x

Proof

Step Hyp Ref Expression
1 mrisval.1 N = mrCls A
2 mrisval.2 I = mrInd A
3 fvssunirn Moore X ran Moore
4 3 sseli A Moore X A ran Moore
5 unieq c = A c = A
6 5 pweqd c = A 𝒫 c = 𝒫 A
7 fveq2 c = A mrCls c = mrCls A
8 7 1 eqtr4di c = A mrCls c = N
9 8 fveq1d c = A mrCls c s x = N s x
10 9 eleq2d c = A x mrCls c s x x N s x
11 10 notbid c = A ¬ x mrCls c s x ¬ x N s x
12 11 ralbidv c = A x s ¬ x mrCls c s x x s ¬ x N s x
13 6 12 rabeqbidv c = A s 𝒫 c | x s ¬ x mrCls c s x = s 𝒫 A | x s ¬ x N s x
14 df-mri mrInd = c ran Moore s 𝒫 c | x s ¬ x mrCls c s x
15 vuniex c V
16 15 pwex 𝒫 c V
17 16 rabex s 𝒫 c | x s ¬ x mrCls c s x V
18 13 14 17 fvmpt3i A ran Moore mrInd A = s 𝒫 A | x s ¬ x N s x
19 4 18 syl A Moore X mrInd A = s 𝒫 A | x s ¬ x N s x
20 2 19 syl5eq A Moore X I = s 𝒫 A | x s ¬ x N s x
21 mreuni A Moore X A = X
22 21 pweqd A Moore X 𝒫 A = 𝒫 X
23 22 rabeqdv A Moore X s 𝒫 A | x s ¬ x N s x = s 𝒫 X | x s ¬ x N s x
24 20 23 eqtrd A Moore X I = s 𝒫 X | x s ¬ x N s x