Metamath Proof Explorer


Theorem mscl

Description: Closure of the distance function of a metric space. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x X = Base M
mscl.d D = dist M
Assertion mscl M MetSp A X B X A D B

Proof

Step Hyp Ref Expression
1 mscl.x X = Base M
2 mscl.d D = dist M
3 ovres A X B X A D X × X B = A D B
4 3 3adant1 M MetSp A X B X A D X × X B = A D B
5 1 2 msmet2 M MetSp D X × X Met X
6 metcl D X × X Met X A X B X A D X × X B
7 5 6 syl3an1 M MetSp A X B X A D X × X B
8 4 7 eqeltrrd M MetSp A X B X A D B