Database
BASIC TOPOLOGY
Metric spaces
Open sets of a metric space
msf
Metamath Proof Explorer
Theorem msf
Description: The distance function of a metric space is a function into the real
numbers. (Contributed by NM , 30-Aug-2006) (Revised by Mario Carneiro , 12-Nov-2013)
Ref
Expression
Hypotheses
msf.x
⊢ X = Base M
msf.d
⊢ D = dist ⁡ M ↾ X × X
Assertion
msf
⊢ M ∈ MetSp → D : X × X ⟶ ℝ
Proof
Step
Hyp
Ref
Expression
1
msf.x
⊢ X = Base M
2
msf.d
⊢ D = dist ⁡ M ↾ X × X
3
1 2
msmet
⊢ M ∈ MetSp → D ∈ Met ⁡ X
4
metf
⊢ D ∈ Met ⁡ X → D : X × X ⟶ ℝ
5
3 4
syl
⊢ M ∈ MetSp → D : X × X ⟶ ℝ