Metamath Proof Explorer


Theorem msf

Description: The distance function of a metric space is a function into the real numbers. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypotheses msf.x X = Base M
msf.d D = dist M X × X
Assertion msf M MetSp D : X × X

Proof

Step Hyp Ref Expression
1 msf.x X = Base M
2 msf.d D = dist M X × X
3 1 2 msmet M MetSp D Met X
4 metf D Met X D : X × X
5 3 4 syl M MetSp D : X × X