Metamath Proof Explorer


Theorem msq0d

Description: A number is zero iff its square is zero (where square is represented using multiplication). (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis msq0d.1 φA
Assertion msq0d φAA=0A=0

Proof

Step Hyp Ref Expression
1 msq0d.1 φA
2 mul0or AAAA=0A=0A=0
3 1 1 2 syl2anc φAA=0A=0A=0
4 oridm A=0A=0A=0
5 3 4 bitrdi φAA=0A=0