Metamath Proof Explorer


Theorem msq11

Description: The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion msq11 A 0 A B 0 B A A = B B A = B

Proof

Step Hyp Ref Expression
1 le2msq A 0 A B 0 B A B A A B B
2 le2msq B 0 B A 0 A B A B B A A
3 2 ancoms A 0 A B 0 B B A B B A A
4 1 3 anbi12d A 0 A B 0 B A B B A A A B B B B A A
5 simpll A 0 A B 0 B A
6 simprl A 0 A B 0 B B
7 5 6 letri3d A 0 A B 0 B A = B A B B A
8 5 5 remulcld A 0 A B 0 B A A
9 6 6 remulcld A 0 A B 0 B B B
10 8 9 letri3d A 0 A B 0 B A A = B B A A B B B B A A
11 4 7 10 3bitr4rd A 0 A B 0 B A A = B B A = B