Metamath Proof Explorer


Theorem msqsqrtd

Description: Square root theorem. Theorem I.35 of Apostol p. 29. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1 φ A
Assertion msqsqrtd φ A A = A

Proof

Step Hyp Ref Expression
1 abscld.1 φ A
2 1 sqrtcld φ A
3 2 sqvald φ A 2 = A A
4 1 sqsqrtd φ A 2 = A
5 3 4 eqtr3d φ A A = A