Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
msqznn
Next ⟩
zneo
Metamath Proof Explorer
Ascii
Unicode
Theorem
msqznn
Description:
The square of a nonzero integer is a positive integer.
(Contributed by
NM
, 2-Aug-2004)
Ref
Expression
Assertion
msqznn
⊢
A
∈
ℤ
∧
A
≠
0
→
A
⁢
A
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
zmulcl
⊢
A
∈
ℤ
∧
A
∈
ℤ
→
A
⁢
A
∈
ℤ
2
1
anidms
⊢
A
∈
ℤ
→
A
⁢
A
∈
ℤ
3
2
adantr
⊢
A
∈
ℤ
∧
A
≠
0
→
A
⁢
A
∈
ℤ
4
zre
⊢
A
∈
ℤ
→
A
∈
ℝ
5
msqgt0
⊢
A
∈
ℝ
∧
A
≠
0
→
0
<
A
⁢
A
6
4
5
sylan
⊢
A
∈
ℤ
∧
A
≠
0
→
0
<
A
⁢
A
7
elnnz
⊢
A
⁢
A
∈
ℕ
↔
A
⁢
A
∈
ℤ
∧
0
<
A
⁢
A
8
3
6
7
sylanbrc
⊢
A
∈
ℤ
∧
A
≠
0
→
A
⁢
A
∈
ℕ