Metamath Proof Explorer


Theorem msrtri

Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses mscl.x X = Base M
mscl.d D = dist M
Assertion msrtri M MetSp A X B X C X A D C B D C A D B

Proof

Step Hyp Ref Expression
1 mscl.x X = Base M
2 mscl.d D = dist M
3 1 2 msmet2 M MetSp D X × X Met X
4 metrtri D X × X Met X A X B X C X A D X × X C B D X × X C A D X × X B
5 3 4 sylan M MetSp A X B X C X A D X × X C B D X × X C A D X × X B
6 simpr1 M MetSp A X B X C X A X
7 simpr3 M MetSp A X B X C X C X
8 6 7 ovresd M MetSp A X B X C X A D X × X C = A D C
9 simpr2 M MetSp A X B X C X B X
10 9 7 ovresd M MetSp A X B X C X B D X × X C = B D C
11 8 10 oveq12d M MetSp A X B X C X A D X × X C B D X × X C = A D C B D C
12 11 fveq2d M MetSp A X B X C X A D X × X C B D X × X C = A D C B D C
13 6 9 ovresd M MetSp A X B X C X A D X × X B = A D B
14 5 12 13 3brtr3d M MetSp A X B X C X A D C B D C A D B