Database
BASIC TOPOLOGY
Metric spaces
Open sets of a metric space
mstps
Next ⟩
xmsxmet
Metamath Proof Explorer
Ascii
Unicode
Theorem
mstps
Description:
A metric space is a topological space.
(Contributed by
Mario Carneiro
, 26-Aug-2015)
Ref
Expression
Assertion
mstps
⊢
M
∈
MetSp
→
M
∈
TopSp
Proof
Step
Hyp
Ref
Expression
1
msxms
⊢
M
∈
MetSp
→
M
∈
∞MetSp
2
xmstps
⊢
M
∈
∞MetSp
→
M
∈
TopSp
3
1
2
syl
⊢
M
∈
MetSp
→
M
∈
TopSp