Metamath Proof Explorer


Theorem mt2bi

Description: A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993) (Proof shortened by Wolf Lammen, 12-Nov-2012)

Ref Expression
Hypothesis mt2bi.1 φ
Assertion mt2bi ¬ ψ ψ ¬ φ

Proof

Step Hyp Ref Expression
1 mt2bi.1 φ
2 1 a1bi ¬ ψ φ ¬ ψ
3 con2b φ ¬ ψ ψ ¬ φ
4 2 3 bitri ¬ ψ ψ ¬ φ