Metamath Proof Explorer


Theorem mt2i

Description: Modus tollens inference. (Contributed by NM, 26-Mar-1995) (Proof shortened by Wolf Lammen, 15-Sep-2012)

Ref Expression
Hypotheses mt2i.1 χ
mt2i.2 φ ψ ¬ χ
Assertion mt2i φ ¬ ψ

Proof

Step Hyp Ref Expression
1 mt2i.1 χ
2 mt2i.2 φ ψ ¬ χ
3 1 a1i φ χ
4 3 2 mt2d φ ¬ ψ