Metamath Proof Explorer


Theorem mteqand

Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023)

Ref Expression
Hypotheses mteqand.1 φ C D
mteqand.2 φ A = B C = D
Assertion mteqand φ A B

Proof

Step Hyp Ref Expression
1 mteqand.1 φ C D
2 mteqand.2 φ A = B C = D
3 1 neneqd φ ¬ C = D
4 3 2 mtand φ ¬ A = B
5 4 neqned φ A B