Metamath Proof Explorer


Theorem mtest

Description: The Weierstrass M-test. If F is a sequence of functions which are uniformly bounded by the convergent sequence M ( k ) , then the series generated by the sequence F converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses mtest.z Z = N
mtest.n φ N
mtest.s φ S V
mtest.f φ F : Z S
mtest.m φ M W
mtest.c φ k Z M k
mtest.l φ k Z z S F k z M k
mtest.d φ seq N + M dom
Assertion mtest φ seq N f + F dom u S

Proof

Step Hyp Ref Expression
1 mtest.z Z = N
2 mtest.n φ N
3 mtest.s φ S V
4 mtest.f φ F : Z S
5 mtest.m φ M W
6 mtest.c φ k Z M k
7 mtest.l φ k Z z S F k z M k
8 mtest.d φ seq N + M dom
9 1 climcau N seq N + M dom r + j Z i j seq N + M i seq N + M j < r
10 2 8 9 syl2anc φ r + j Z i j seq N + M i seq N + M j < r
11 seqfn N seq N f + F Fn N
12 2 11 syl φ seq N f + F Fn N
13 1 fneq2i seq N f + F Fn Z seq N f + F Fn N
14 12 13 sylibr φ seq N f + F Fn Z
15 3 elexd φ S V
16 15 adantr φ i Z S V
17 simpr φ i Z i Z
18 17 1 eleqtrdi φ i Z i N
19 4 adantr φ i Z F : Z S
20 elfzuz k N i k N
21 20 1 eleqtrrdi k N i k Z
22 ffvelrn F : Z S k Z F k S
23 19 21 22 syl2an φ i Z k N i F k S
24 elmapi F k S F k : S
25 23 24 syl φ i Z k N i F k : S
26 25 feqmptd φ i Z k N i F k = z S F k z
27 21 adantl φ i Z k N i k Z
28 fveq2 n = k F n = F k
29 28 fveq1d n = k F n z = F k z
30 eqid n Z F n z = n Z F n z
31 fvex F k z V
32 29 30 31 fvmpt k Z n Z F n z k = F k z
33 27 32 syl φ i Z k N i n Z F n z k = F k z
34 33 mpteq2dv φ i Z k N i z S n Z F n z k = z S F k z
35 26 34 eqtr4d φ i Z k N i F k = z S n Z F n z k
36 16 18 35 seqof φ i Z seq N f + F i = z S seq N + n Z F n z i
37 2 adantr φ z S N
38 4 ffvelrnda φ n Z F n S
39 elmapi F n S F n : S
40 38 39 syl φ n Z F n : S
41 40 ffvelrnda φ n Z z S F n z
42 41 an32s φ z S n Z F n z
43 42 fmpttd φ z S n Z F n z : Z
44 43 ffvelrnda φ z S i Z n Z F n z i
45 1 37 44 serf φ z S seq N + n Z F n z : Z
46 45 ffvelrnda φ z S i Z seq N + n Z F n z i
47 46 an32s φ i Z z S seq N + n Z F n z i
48 47 fmpttd φ i Z z S seq N + n Z F n z i : S
49 cnex V
50 elmapg V S V z S seq N + n Z F n z i S z S seq N + n Z F n z i : S
51 49 16 50 sylancr φ i Z z S seq N + n Z F n z i S z S seq N + n Z F n z i : S
52 48 51 mpbird φ i Z z S seq N + n Z F n z i S
53 36 52 eqeltrd φ i Z seq N f + F i S
54 53 ralrimiva φ i Z seq N f + F i S
55 ffnfv seq N f + F : Z S seq N f + F Fn Z i Z seq N f + F i S
56 14 54 55 sylanbrc φ seq N f + F : Z S
57 56 ad2antrr φ r + j Z i j seq N f + F : Z S
58 1 uztrn2 j Z i j i Z
59 58 adantl φ r + j Z i j i Z
60 57 59 ffvelrnd φ r + j Z i j seq N f + F i S
61 elmapi seq N f + F i S seq N f + F i : S
62 60 61 syl φ r + j Z i j seq N f + F i : S
63 62 ffvelrnda φ r + j Z i j z S seq N f + F i z
64 simprl φ r + j Z i j j Z
65 57 64 ffvelrnd φ r + j Z i j seq N f + F j S
66 elmapi seq N f + F j S seq N f + F j : S
67 65 66 syl φ r + j Z i j seq N f + F j : S
68 67 ffvelrnda φ r + j Z i j z S seq N f + F j z
69 63 68 subcld φ r + j Z i j z S seq N f + F i z seq N f + F j z
70 69 abscld φ r + j Z i j z S seq N f + F i z seq N f + F j z
71 fzfid φ r + j Z i j z S j + 1 i Fin
72 ssun2 j + 1 i N j j + 1 i
73 64 1 eleqtrdi φ r + j Z i j j N
74 simprr φ r + j Z i j i j
75 elfzuzb j N i j N i j
76 73 74 75 sylanbrc φ r + j Z i j j N i
77 fzsplit j N i N i = N j j + 1 i
78 76 77 syl φ r + j Z i j N i = N j j + 1 i
79 72 78 sseqtrrid φ r + j Z i j j + 1 i N i
80 79 sselda φ r + j Z i j k j + 1 i k N i
81 80 adantlr φ r + j Z i j z S k j + 1 i k N i
82 4 ad2antrr φ r + j Z i j F : Z S
83 82 21 22 syl2an φ r + j Z i j k N i F k S
84 83 24 syl φ r + j Z i j k N i F k : S
85 84 ffvelrnda φ r + j Z i j k N i z S F k z
86 85 an32s φ r + j Z i j z S k N i F k z
87 81 86 syldan φ r + j Z i j z S k j + 1 i F k z
88 87 abscld φ r + j Z i j z S k j + 1 i F k z
89 71 88 fsumrecl φ r + j Z i j z S k = j + 1 i F k z
90 1 2 6 serfre φ seq N + M : Z
91 90 ad2antrr φ r + j Z i j seq N + M : Z
92 91 59 ffvelrnd φ r + j Z i j seq N + M i
93 91 64 ffvelrnd φ r + j Z i j seq N + M j
94 92 93 resubcld φ r + j Z i j seq N + M i seq N + M j
95 94 recnd φ r + j Z i j seq N + M i seq N + M j
96 95 abscld φ r + j Z i j seq N + M i seq N + M j
97 96 adantr φ r + j Z i j z S seq N + M i seq N + M j
98 58 36 sylan2 φ j Z i j seq N f + F i = z S seq N + n Z F n z i
99 98 adantlr φ r + j Z i j seq N f + F i = z S seq N + n Z F n z i
100 99 fveq1d φ r + j Z i j seq N f + F i z = z S seq N + n Z F n z i z
101 fvex seq N + n Z F n z i V
102 eqid z S seq N + n Z F n z i = z S seq N + n Z F n z i
103 102 fvmpt2 z S seq N + n Z F n z i V z S seq N + n Z F n z i z = seq N + n Z F n z i
104 101 103 mpan2 z S z S seq N + n Z F n z i z = seq N + n Z F n z i
105 100 104 sylan9eq φ r + j Z i j z S seq N f + F i z = seq N + n Z F n z i
106 fveq2 i = j seq N f + F i = seq N f + F j
107 fveq2 i = j seq N + n Z F n z i = seq N + n Z F n z j
108 107 mpteq2dv i = j z S seq N + n Z F n z i = z S seq N + n Z F n z j
109 106 108 eqeq12d i = j seq N f + F i = z S seq N + n Z F n z i seq N f + F j = z S seq N + n Z F n z j
110 36 ralrimiva φ i Z seq N f + F i = z S seq N + n Z F n z i
111 110 ad2antrr φ r + j Z i j i Z seq N f + F i = z S seq N + n Z F n z i
112 109 111 64 rspcdva φ r + j Z i j seq N f + F j = z S seq N + n Z F n z j
113 112 fveq1d φ r + j Z i j seq N f + F j z = z S seq N + n Z F n z j z
114 fvex seq N + n Z F n z j V
115 eqid z S seq N + n Z F n z j = z S seq N + n Z F n z j
116 115 fvmpt2 z S seq N + n Z F n z j V z S seq N + n Z F n z j z = seq N + n Z F n z j
117 114 116 mpan2 z S z S seq N + n Z F n z j z = seq N + n Z F n z j
118 113 117 sylan9eq φ r + j Z i j z S seq N f + F j z = seq N + n Z F n z j
119 105 118 oveq12d φ r + j Z i j z S seq N f + F i z seq N f + F j z = seq N + n Z F n z i seq N + n Z F n z j
120 21 adantl φ r + j Z i j z S k N i k Z
121 120 32 syl φ r + j Z i j z S k N i n Z F n z k = F k z
122 59 adantr φ r + j Z i j z S i Z
123 122 1 eleqtrdi φ r + j Z i j z S i N
124 121 123 86 fsumser φ r + j Z i j z S k = N i F k z = seq N + n Z F n z i
125 elfzuz k N j k N
126 125 1 eleqtrrdi k N j k Z
127 126 adantl φ r + j Z i j z S k N j k Z
128 127 32 syl φ r + j Z i j z S k N j n Z F n z k = F k z
129 64 adantr φ r + j Z i j z S j Z
130 129 1 eleqtrdi φ r + j Z i j z S j N
131 82 126 22 syl2an φ r + j Z i j k N j F k S
132 131 24 syl φ r + j Z i j k N j F k : S
133 132 ffvelrnda φ r + j Z i j k N j z S F k z
134 133 an32s φ r + j Z i j z S k N j F k z
135 128 130 134 fsumser φ r + j Z i j z S k = N j F k z = seq N + n Z F n z j
136 124 135 oveq12d φ r + j Z i j z S k = N i F k z k = N j F k z = seq N + n Z F n z i seq N + n Z F n z j
137 fzfid φ r + j Z i j z S N j Fin
138 137 134 fsumcl φ r + j Z i j z S k = N j F k z
139 71 87 fsumcl φ r + j Z i j z S k = j + 1 i F k z
140 eluzelre j N j
141 73 140 syl φ r + j Z i j j
142 141 ltp1d φ r + j Z i j j < j + 1
143 fzdisj j < j + 1 N j j + 1 i =
144 142 143 syl φ r + j Z i j N j j + 1 i =
145 144 adantr φ r + j Z i j z S N j j + 1 i =
146 78 adantr φ r + j Z i j z S N i = N j j + 1 i
147 fzfid φ r + j Z i j z S N i Fin
148 145 146 147 86 fsumsplit φ r + j Z i j z S k = N i F k z = k = N j F k z + k = j + 1 i F k z
149 138 139 148 mvrladdd φ r + j Z i j z S k = N i F k z k = N j F k z = k = j + 1 i F k z
150 119 136 149 3eqtr2d φ r + j Z i j z S seq N f + F i z seq N f + F j z = k = j + 1 i F k z
151 150 fveq2d φ r + j Z i j z S seq N f + F i z seq N f + F j z = k = j + 1 i F k z
152 71 87 fsumabs φ r + j Z i j z S k = j + 1 i F k z k = j + 1 i F k z
153 151 152 eqbrtrd φ r + j Z i j z S seq N f + F i z seq N f + F j z k = j + 1 i F k z
154 simpll φ r + j Z i j φ
155 154 21 6 syl2an φ r + j Z i j k N i M k
156 80 155 syldan φ r + j Z i j k j + 1 i M k
157 156 adantlr φ r + j Z i j z S k j + 1 i M k
158 81 21 syl φ r + j Z i j z S k j + 1 i k Z
159 7 ad4ant14 φ r + j Z i j k Z z S F k z M k
160 159 anass1rs φ r + j Z i j z S k Z F k z M k
161 158 160 syldan φ r + j Z i j z S k j + 1 i F k z M k
162 71 88 157 161 fsumle φ r + j Z i j z S k = j + 1 i F k z k = j + 1 i M k
163 eqidd φ r + j Z i j k N i M k = M k
164 59 1 eleqtrdi φ r + j Z i j i N
165 155 recnd φ r + j Z i j k N i M k
166 163 164 165 fsumser φ r + j Z i j k = N i M k = seq N + M i
167 eqidd φ r + j Z i j k N j M k = M k
168 154 126 6 syl2an φ r + j Z i j k N j M k
169 168 recnd φ r + j Z i j k N j M k
170 167 73 169 fsumser φ r + j Z i j k = N j M k = seq N + M j
171 166 170 oveq12d φ r + j Z i j k = N i M k k = N j M k = seq N + M i seq N + M j
172 fzfid φ r + j Z i j N j Fin
173 172 169 fsumcl φ r + j Z i j k = N j M k
174 fzfid φ r + j Z i j j + 1 i Fin
175 80 165 syldan φ r + j Z i j k j + 1 i M k
176 174 175 fsumcl φ r + j Z i j k = j + 1 i M k
177 fzfid φ r + j Z i j N i Fin
178 144 78 177 165 fsumsplit φ r + j Z i j k = N i M k = k = N j M k + k = j + 1 i M k
179 173 176 178 mvrladdd φ r + j Z i j k = N i M k k = N j M k = k = j + 1 i M k
180 171 179 eqtr3d φ r + j Z i j seq N + M i seq N + M j = k = j + 1 i M k
181 180 fveq2d φ r + j Z i j seq N + M i seq N + M j = k = j + 1 i M k
182 181 adantr φ r + j Z i j z S seq N + M i seq N + M j = k = j + 1 i M k
183 180 94 eqeltrrd φ r + j Z i j k = j + 1 i M k
184 183 adantr φ r + j Z i j z S k = j + 1 i M k
185 0red φ r + j Z i j z S k j + 1 i 0
186 87 absge0d φ r + j Z i j z S k j + 1 i 0 F k z
187 185 88 157 186 161 letrd φ r + j Z i j z S k j + 1 i 0 M k
188 71 157 187 fsumge0 φ r + j Z i j z S 0 k = j + 1 i M k
189 184 188 absidd φ r + j Z i j z S k = j + 1 i M k = k = j + 1 i M k
190 182 189 eqtrd φ r + j Z i j z S seq N + M i seq N + M j = k = j + 1 i M k
191 162 190 breqtrrd φ r + j Z i j z S k = j + 1 i F k z seq N + M i seq N + M j
192 70 89 97 153 191 letrd φ r + j Z i j z S seq N f + F i z seq N f + F j z seq N + M i seq N + M j
193 simpllr φ r + j Z i j z S r +
194 193 rpred φ r + j Z i j z S r
195 lelttr seq N f + F i z seq N f + F j z seq N + M i seq N + M j r seq N f + F i z seq N f + F j z seq N + M i seq N + M j seq N + M i seq N + M j < r seq N f + F i z seq N f + F j z < r
196 70 97 194 195 syl3anc φ r + j Z i j z S seq N f + F i z seq N f + F j z seq N + M i seq N + M j seq N + M i seq N + M j < r seq N f + F i z seq N f + F j z < r
197 192 196 mpand φ r + j Z i j z S seq N + M i seq N + M j < r seq N f + F i z seq N f + F j z < r
198 197 ralrimdva φ r + j Z i j seq N + M i seq N + M j < r z S seq N f + F i z seq N f + F j z < r
199 198 anassrs φ r + j Z i j seq N + M i seq N + M j < r z S seq N f + F i z seq N f + F j z < r
200 199 ralimdva φ r + j Z i j seq N + M i seq N + M j < r i j z S seq N f + F i z seq N f + F j z < r
201 200 reximdva φ r + j Z i j seq N + M i seq N + M j < r j Z i j z S seq N f + F i z seq N f + F j z < r
202 201 ralimdva φ r + j Z i j seq N + M i seq N + M j < r r + j Z i j z S seq N f + F i z seq N f + F j z < r
203 10 202 mpd φ r + j Z i j z S seq N f + F i z seq N f + F j z < r
204 1 2 3 56 ulmcau φ seq N f + F dom u S r + j Z i j z S seq N f + F i z seq N f + F j z < r
205 203 204 mpbird φ seq N f + F dom u S