Metamath Proof Explorer


Theorem mudivsum

Description: Asymptotic formula for sum_ n <_ x , mmu ( n ) / n = O(1) . Equation 10.2.1 of Shapiro, p. 405. (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Assertion mudivsum x + n = 1 x μ n n 𝑂1

Proof

Step Hyp Ref Expression
1 1red 1
2 reex V
3 rpssre +
4 2 3 ssexi + V
5 4 a1i + V
6 fzfid x + 1 x Fin
7 rpre x + x
8 elfznn n 1 x n
9 nndivre x n x n
10 7 8 9 syl2an x + n 1 x x n
11 10 recnd x + n 1 x x n
12 reflcl x n x n
13 10 12 syl x + n 1 x x n
14 13 recnd x + n 1 x x n
15 11 14 subcld x + n 1 x x n x n
16 8 adantl x + n 1 x n
17 mucl n μ n
18 16 17 syl x + n 1 x μ n
19 18 zcnd x + n 1 x μ n
20 15 19 mulcld x + n 1 x x n x n μ n
21 6 20 fsumcl x + n = 1 x x n x n μ n
22 rpcn x + x
23 rpne0 x + x 0
24 21 22 23 divcld x + n = 1 x x n x n μ n x
25 24 adantl x + n = 1 x x n x n μ n x
26 ovexd x + 1 x V
27 eqidd x + n = 1 x x n x n μ n x = x + n = 1 x x n x n μ n x
28 eqidd x + 1 x = x + 1 x
29 5 25 26 27 28 offval2 x + n = 1 x x n x n μ n x + f x + 1 x = x + n = 1 x x n x n μ n x + 1 x
30 3 a1i +
31 21 adantr x + 1 x n = 1 x x n x n μ n
32 22 adantr x + 1 x x
33 23 adantr x + 1 x x 0
34 31 32 33 absdivd x + 1 x n = 1 x x n x n μ n x = n = 1 x x n x n μ n x
35 rprege0 x + x 0 x
36 absid x 0 x x = x
37 35 36 syl x + x = x
38 37 adantr x + 1 x x = x
39 38 oveq2d x + 1 x n = 1 x x n x n μ n x = n = 1 x x n x n μ n x
40 34 39 eqtrd x + 1 x n = 1 x x n x n μ n x = n = 1 x x n x n μ n x
41 31 abscld x + 1 x n = 1 x x n x n μ n
42 fzfid x + 1 x 1 x Fin
43 20 adantlr x + 1 x n 1 x x n x n μ n
44 43 abscld x + 1 x n 1 x x n x n μ n
45 42 44 fsumrecl x + 1 x n = 1 x x n x n μ n
46 7 adantr x + 1 x x
47 42 43 fsumabs x + 1 x n = 1 x x n x n μ n n = 1 x x n x n μ n
48 reflcl x x
49 46 48 syl x + 1 x x
50 1red x + 1 x n 1 x 1
51 15 adantlr x + 1 x n 1 x x n x n
52 fz1ssnn 1 x
53 52 a1i x + 1 x 1 x
54 53 sselda x + 1 x n 1 x n
55 54 17 syl x + 1 x n 1 x μ n
56 55 zcnd x + 1 x n 1 x μ n
57 51 56 absmuld x + 1 x n 1 x x n x n μ n = x n x n μ n
58 51 abscld x + 1 x n 1 x x n x n
59 56 abscld x + 1 x n 1 x μ n
60 51 absge0d x + 1 x n 1 x 0 x n x n
61 56 absge0d x + 1 x n 1 x 0 μ n
62 simpl x + 1 x x +
63 8 nnrpd n 1 x n +
64 rpdivcl x + n + x n +
65 62 63 64 syl2an x + 1 x n 1 x x n +
66 3 65 sselid x + 1 x n 1 x x n
67 66 12 syl x + 1 x n 1 x x n
68 flle x n x n x n
69 66 68 syl x + 1 x n 1 x x n x n
70 67 66 69 abssubge0d x + 1 x n 1 x x n x n = x n x n
71 fracle1 x n x n x n 1
72 66 71 syl x + 1 x n 1 x x n x n 1
73 70 72 eqbrtrd x + 1 x n 1 x x n x n 1
74 mule1 n μ n 1
75 54 74 syl x + 1 x n 1 x μ n 1
76 58 50 59 50 60 61 73 75 lemul12ad x + 1 x n 1 x x n x n μ n 1 1
77 1t1e1 1 1 = 1
78 76 77 breqtrdi x + 1 x n 1 x x n x n μ n 1
79 57 78 eqbrtrd x + 1 x n 1 x x n x n μ n 1
80 42 44 50 79 fsumle x + 1 x n = 1 x x n x n μ n n = 1 x 1
81 1cnd x + 1 x 1
82 fsumconst 1 x Fin 1 n = 1 x 1 = 1 x 1
83 42 81 82 syl2anc x + 1 x n = 1 x 1 = 1 x 1
84 flge1nn x 1 x x
85 7 84 sylan x + 1 x x
86 85 nnnn0d x + 1 x x 0
87 hashfz1 x 0 1 x = x
88 86 87 syl x + 1 x 1 x = x
89 88 oveq1d x + 1 x 1 x 1 = x 1
90 49 recnd x + 1 x x
91 90 mulid1d x + 1 x x 1 = x
92 83 89 91 3eqtrd x + 1 x n = 1 x 1 = x
93 80 92 breqtrd x + 1 x n = 1 x x n x n μ n x
94 flle x x x
95 46 94 syl x + 1 x x x
96 45 49 46 93 95 letrd x + 1 x n = 1 x x n x n μ n x
97 41 45 46 47 96 letrd x + 1 x n = 1 x x n x n μ n x
98 32 mulid1d x + 1 x x 1 = x
99 97 98 breqtrrd x + 1 x n = 1 x x n x n μ n x 1
100 1red x + 1 x 1
101 41 100 62 ledivmuld x + 1 x n = 1 x x n x n μ n x 1 n = 1 x x n x n μ n x 1
102 99 101 mpbird x + 1 x n = 1 x x n x n μ n x 1
103 40 102 eqbrtrd x + 1 x n = 1 x x n x n μ n x 1
104 103 adantl x + 1 x n = 1 x x n x n μ n x 1
105 30 25 1 1 104 elo1d x + n = 1 x x n x n μ n x 𝑂1
106 ax-1cn 1
107 divrcnv 1 x + 1 x 0
108 106 107 ax-mp x + 1 x 0
109 rlimo1 x + 1 x 0 x + 1 x 𝑂1
110 108 109 mp1i x + 1 x 𝑂1
111 o1add x + n = 1 x x n x n μ n x 𝑂1 x + 1 x 𝑂1 x + n = 1 x x n x n μ n x + f x + 1 x 𝑂1
112 105 110 111 syl2anc x + n = 1 x x n x n μ n x + f x + 1 x 𝑂1
113 29 112 eqeltrrd x + n = 1 x x n x n μ n x + 1 x 𝑂1
114 ovexd x + n = 1 x x n x n μ n x + 1 x V
115 18 zred x + n 1 x μ n
116 115 16 nndivred x + n 1 x μ n n
117 116 recnd x + n 1 x μ n n
118 6 117 fsumcl x + n = 1 x μ n n
119 118 adantl x + n = 1 x μ n n
120 118 adantr x + 1 x n = 1 x μ n n
121 120 abscld x + 1 x n = 1 x μ n n
122 117 adantlr x + 1 x n 1 x μ n n
123 42 32 122 fsummulc2 x + 1 x x n = 1 x μ n n = n = 1 x x μ n n
124 14 19 mulcld x + n 1 x x n μ n
125 124 adantlr x + 1 x n 1 x x n μ n
126 42 43 125 fsumadd x + 1 x n = 1 x x n x n μ n + x n μ n = n = 1 x x n x n μ n + n = 1 x x n μ n
127 11 adantlr x + 1 x n 1 x x n
128 14 adantlr x + 1 x n 1 x x n
129 127 128 npcand x + 1 x n 1 x x n - x n + x n = x n
130 129 oveq1d x + 1 x n 1 x x n - x n + x n μ n = x n μ n
131 51 128 56 adddird x + 1 x n 1 x x n - x n + x n μ n = x n x n μ n + x n μ n
132 32 adantr x + 1 x n 1 x x
133 54 nnrpd x + 1 x n 1 x n +
134 rpcnne0 n + n n 0
135 133 134 syl x + 1 x n 1 x n n 0
136 div23 x μ n n n 0 x μ n n = x n μ n
137 divass x μ n n n 0 x μ n n = x μ n n
138 136 137 eqtr3d x μ n n n 0 x n μ n = x μ n n
139 132 56 135 138 syl3anc x + 1 x n 1 x x n μ n = x μ n n
140 130 131 139 3eqtr3d x + 1 x n 1 x x n x n μ n + x n μ n = x μ n n
141 140 sumeq2dv x + 1 x n = 1 x x n x n μ n + x n μ n = n = 1 x x μ n n
142 eqidd k = n m μ n = μ n
143 ssrab2 y | y k
144 simprr x + 1 x k 1 x n y | y k n y | y k
145 143 144 sselid x + 1 x k 1 x n y | y k n
146 145 17 syl x + 1 x k 1 x n y | y k μ n
147 146 zcnd x + 1 x k 1 x n y | y k μ n
148 142 46 147 dvdsflsumcom x + 1 x k = 1 x n y | y k μ n = n = 1 x m = 1 x n μ n
149 147 3impb x + 1 x k 1 x n y | y k μ n
150 149 mulid1d x + 1 x k 1 x n y | y k μ n 1 = μ n
151 150 2sumeq2dv x + 1 x k = 1 x n y | y k μ n 1 = k = 1 x n y | y k μ n
152 eqidd k = 1 1 = 1
153 nnuz = 1
154 85 153 eleqtrdi x + 1 x x 1
155 eluzfz1 x 1 1 1 x
156 154 155 syl x + 1 x 1 1 x
157 1cnd x + 1 x k 1 x 1
158 152 42 53 156 157 musumsum x + 1 x k = 1 x n y | y k μ n 1 = 1
159 151 158 eqtr3d x + 1 x k = 1 x n y | y k μ n = 1
160 fzfid x + 1 x n 1 x 1 x n Fin
161 fsumconst 1 x n Fin μ n m = 1 x n μ n = 1 x n μ n
162 160 56 161 syl2anc x + 1 x n 1 x m = 1 x n μ n = 1 x n μ n
163 rprege0 x n + x n 0 x n
164 flge0nn0 x n 0 x n x n 0
165 hashfz1 x n 0 1 x n = x n
166 65 163 164 165 4syl x + 1 x n 1 x 1 x n = x n
167 166 oveq1d x + 1 x n 1 x 1 x n μ n = x n μ n
168 162 167 eqtrd x + 1 x n 1 x m = 1 x n μ n = x n μ n
169 168 sumeq2dv x + 1 x n = 1 x m = 1 x n μ n = n = 1 x x n μ n
170 148 159 169 3eqtr3rd x + 1 x n = 1 x x n μ n = 1
171 170 oveq2d x + 1 x n = 1 x x n x n μ n + n = 1 x x n μ n = n = 1 x x n x n μ n + 1
172 126 141 171 3eqtr3d x + 1 x n = 1 x x μ n n = n = 1 x x n x n μ n + 1
173 123 172 eqtrd x + 1 x x n = 1 x μ n n = n = 1 x x n x n μ n + 1
174 173 oveq1d x + 1 x x n = 1 x μ n n x = n = 1 x x n x n μ n + 1 x
175 120 32 33 divcan3d x + 1 x x n = 1 x μ n n x = n = 1 x μ n n
176 rpcnne0 x + x x 0
177 176 adantr x + 1 x x x 0
178 divdir n = 1 x x n x n μ n 1 x x 0 n = 1 x x n x n μ n + 1 x = n = 1 x x n x n μ n x + 1 x
179 31 81 177 178 syl3anc x + 1 x n = 1 x x n x n μ n + 1 x = n = 1 x x n x n μ n x + 1 x
180 174 175 179 3eqtr3d x + 1 x n = 1 x μ n n = n = 1 x x n x n μ n x + 1 x
181 180 fveq2d x + 1 x n = 1 x μ n n = n = 1 x x n x n μ n x + 1 x
182 121 181 eqled x + 1 x n = 1 x μ n n n = 1 x x n x n μ n x + 1 x
183 182 adantl x + 1 x n = 1 x μ n n n = 1 x x n x n μ n x + 1 x
184 1 113 114 119 183 o1le x + n = 1 x μ n n 𝑂1
185 184 mptru x + n = 1 x μ n n 𝑂1