Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
|
2 |
|
reex |
|
3 |
|
rpssre |
|
4 |
2 3
|
ssexi |
|
5 |
4
|
a1i |
|
6 |
|
fzfid |
|
7 |
|
rpre |
|
8 |
|
elfznn |
|
9 |
|
nndivre |
|
10 |
7 8 9
|
syl2an |
|
11 |
10
|
recnd |
|
12 |
|
reflcl |
|
13 |
10 12
|
syl |
|
14 |
13
|
recnd |
|
15 |
11 14
|
subcld |
|
16 |
8
|
adantl |
|
17 |
|
mucl |
|
18 |
16 17
|
syl |
|
19 |
18
|
zcnd |
|
20 |
15 19
|
mulcld |
|
21 |
6 20
|
fsumcl |
|
22 |
|
rpcn |
|
23 |
|
rpne0 |
|
24 |
21 22 23
|
divcld |
|
25 |
24
|
adantl |
|
26 |
|
ovexd |
|
27 |
|
eqidd |
|
28 |
|
eqidd |
|
29 |
5 25 26 27 28
|
offval2 |
|
30 |
3
|
a1i |
|
31 |
21
|
adantr |
|
32 |
22
|
adantr |
|
33 |
23
|
adantr |
|
34 |
31 32 33
|
absdivd |
|
35 |
|
rprege0 |
|
36 |
|
absid |
|
37 |
35 36
|
syl |
|
38 |
37
|
adantr |
|
39 |
38
|
oveq2d |
|
40 |
34 39
|
eqtrd |
|
41 |
31
|
abscld |
|
42 |
|
fzfid |
|
43 |
20
|
adantlr |
|
44 |
43
|
abscld |
|
45 |
42 44
|
fsumrecl |
|
46 |
7
|
adantr |
|
47 |
42 43
|
fsumabs |
|
48 |
|
reflcl |
|
49 |
46 48
|
syl |
|
50 |
|
1red |
|
51 |
15
|
adantlr |
|
52 |
|
fz1ssnn |
|
53 |
52
|
a1i |
|
54 |
53
|
sselda |
|
55 |
54 17
|
syl |
|
56 |
55
|
zcnd |
|
57 |
51 56
|
absmuld |
|
58 |
51
|
abscld |
|
59 |
56
|
abscld |
|
60 |
51
|
absge0d |
|
61 |
56
|
absge0d |
|
62 |
|
simpl |
|
63 |
8
|
nnrpd |
|
64 |
|
rpdivcl |
|
65 |
62 63 64
|
syl2an |
|
66 |
3 65
|
sselid |
|
67 |
66 12
|
syl |
|
68 |
|
flle |
|
69 |
66 68
|
syl |
|
70 |
67 66 69
|
abssubge0d |
|
71 |
|
fracle1 |
|
72 |
66 71
|
syl |
|
73 |
70 72
|
eqbrtrd |
|
74 |
|
mule1 |
|
75 |
54 74
|
syl |
|
76 |
58 50 59 50 60 61 73 75
|
lemul12ad |
|
77 |
|
1t1e1 |
|
78 |
76 77
|
breqtrdi |
|
79 |
57 78
|
eqbrtrd |
|
80 |
42 44 50 79
|
fsumle |
|
81 |
|
1cnd |
|
82 |
|
fsumconst |
|
83 |
42 81 82
|
syl2anc |
|
84 |
|
flge1nn |
|
85 |
7 84
|
sylan |
|
86 |
85
|
nnnn0d |
|
87 |
|
hashfz1 |
|
88 |
86 87
|
syl |
|
89 |
88
|
oveq1d |
|
90 |
49
|
recnd |
|
91 |
90
|
mulid1d |
|
92 |
83 89 91
|
3eqtrd |
|
93 |
80 92
|
breqtrd |
|
94 |
|
flle |
|
95 |
46 94
|
syl |
|
96 |
45 49 46 93 95
|
letrd |
|
97 |
41 45 46 47 96
|
letrd |
|
98 |
32
|
mulid1d |
|
99 |
97 98
|
breqtrrd |
|
100 |
|
1red |
|
101 |
41 100 62
|
ledivmuld |
|
102 |
99 101
|
mpbird |
|
103 |
40 102
|
eqbrtrd |
|
104 |
103
|
adantl |
|
105 |
30 25 1 1 104
|
elo1d |
|
106 |
|
ax-1cn |
|
107 |
|
divrcnv |
|
108 |
106 107
|
ax-mp |
|
109 |
|
rlimo1 |
|
110 |
108 109
|
mp1i |
|
111 |
|
o1add |
|
112 |
105 110 111
|
syl2anc |
|
113 |
29 112
|
eqeltrrd |
|
114 |
|
ovexd |
|
115 |
18
|
zred |
|
116 |
115 16
|
nndivred |
|
117 |
116
|
recnd |
|
118 |
6 117
|
fsumcl |
|
119 |
118
|
adantl |
|
120 |
118
|
adantr |
|
121 |
120
|
abscld |
|
122 |
117
|
adantlr |
|
123 |
42 32 122
|
fsummulc2 |
|
124 |
14 19
|
mulcld |
|
125 |
124
|
adantlr |
|
126 |
42 43 125
|
fsumadd |
|
127 |
11
|
adantlr |
|
128 |
14
|
adantlr |
|
129 |
127 128
|
npcand |
|
130 |
129
|
oveq1d |
|
131 |
51 128 56
|
adddird |
|
132 |
32
|
adantr |
|
133 |
54
|
nnrpd |
|
134 |
|
rpcnne0 |
|
135 |
133 134
|
syl |
|
136 |
|
div23 |
|
137 |
|
divass |
|
138 |
136 137
|
eqtr3d |
|
139 |
132 56 135 138
|
syl3anc |
|
140 |
130 131 139
|
3eqtr3d |
|
141 |
140
|
sumeq2dv |
|
142 |
|
eqidd |
|
143 |
|
ssrab2 |
|
144 |
|
simprr |
|
145 |
143 144
|
sselid |
|
146 |
145 17
|
syl |
|
147 |
146
|
zcnd |
|
148 |
142 46 147
|
dvdsflsumcom |
|
149 |
147
|
3impb |
|
150 |
149
|
mulid1d |
|
151 |
150
|
2sumeq2dv |
|
152 |
|
eqidd |
|
153 |
|
nnuz |
|
154 |
85 153
|
eleqtrdi |
|
155 |
|
eluzfz1 |
|
156 |
154 155
|
syl |
|
157 |
|
1cnd |
|
158 |
152 42 53 156 157
|
musumsum |
|
159 |
151 158
|
eqtr3d |
|
160 |
|
fzfid |
|
161 |
|
fsumconst |
|
162 |
160 56 161
|
syl2anc |
|
163 |
|
rprege0 |
|
164 |
|
flge0nn0 |
|
165 |
|
hashfz1 |
|
166 |
65 163 164 165
|
4syl |
|
167 |
166
|
oveq1d |
|
168 |
162 167
|
eqtrd |
|
169 |
168
|
sumeq2dv |
|
170 |
148 159 169
|
3eqtr3rd |
|
171 |
170
|
oveq2d |
|
172 |
126 141 171
|
3eqtr3d |
|
173 |
123 172
|
eqtrd |
|
174 |
173
|
oveq1d |
|
175 |
120 32 33
|
divcan3d |
|
176 |
|
rpcnne0 |
|
177 |
176
|
adantr |
|
178 |
|
divdir |
|
179 |
31 81 177 178
|
syl3anc |
|
180 |
174 175 179
|
3eqtr3d |
|
181 |
180
|
fveq2d |
|
182 |
121 181
|
eqled |
|
183 |
182
|
adantl |
|
184 |
1 113 114 119 183
|
o1le |
|
185 |
184
|
mptru |
|