Metamath Proof Explorer


Theorem muf

Description: The Möbius function is a function into the integers. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion muf μ :

Proof

Step Hyp Ref Expression
1 df-mu μ = x if p p 2 x 0 1 p | p x
2 0z 0
3 neg1z 1
4 prmdvdsfi x p | p x Fin
5 hashcl p | p x Fin p | p x 0
6 4 5 syl x p | p x 0
7 zexpcl 1 p | p x 0 1 p | p x
8 3 6 7 sylancr x 1 p | p x
9 ifcl 0 1 p | p x if p p 2 x 0 1 p | p x
10 2 8 9 sylancr x if p p 2 x 0 1 p | p x
11 1 10 fmpti μ :