Metamath Proof Explorer


Theorem mul02lem2

Description: Lemma for mul02 . Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion mul02lem2 A 0 A = 0

Proof

Step Hyp Ref Expression
1 ax-1ne0 1 0
2 ax-1cn 1
3 mul02lem1 A 0 A 0 1 1 = 1 + 1
4 2 3 mpan2 A 0 A 0 1 = 1 + 1
5 4 eqcomd A 0 A 0 1 + 1 = 1
6 5 oveq2d A 0 A 0 i i + 1 + 1 = i i + 1
7 ax-icn i
8 7 7 mulcli i i
9 8 2 2 addassi i i + 1 + 1 = i i + 1 + 1
10 ax-i2m1 i i + 1 = 0
11 10 oveq1i i i + 1 + 1 = 0 + 1
12 9 11 eqtr3i i i + 1 + 1 = 0 + 1
13 00id 0 + 0 = 0
14 10 13 eqtr4i i i + 1 = 0 + 0
15 6 12 14 3eqtr3g A 0 A 0 0 + 1 = 0 + 0
16 1re 1
17 0re 0
18 readdcan 1 0 0 0 + 1 = 0 + 0 1 = 0
19 16 17 17 18 mp3an 0 + 1 = 0 + 0 1 = 0
20 15 19 sylib A 0 A 0 1 = 0
21 20 ex A 0 A 0 1 = 0
22 21 necon1d A 1 0 0 A = 0
23 1 22 mpi A 0 A = 0