Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
1
|
adantr |
|
3 |
2
|
mul02d |
|
4 |
3
|
eqeq2d |
|
5 |
|
simpl |
|
6 |
5
|
adantr |
|
7 |
|
0cnd |
|
8 |
|
simpr |
|
9 |
6 7 2 8
|
mulcan2d |
|
10 |
4 9
|
bitr3d |
|
11 |
10
|
biimpd |
|
12 |
11
|
impancom |
|
13 |
12
|
necon1bd |
|
14 |
13
|
orrd |
|
15 |
14
|
ex |
|
16 |
1
|
mul02d |
|
17 |
|
oveq1 |
|
18 |
17
|
eqeq1d |
|
19 |
16 18
|
syl5ibrcom |
|
20 |
5
|
mul01d |
|
21 |
|
oveq2 |
|
22 |
21
|
eqeq1d |
|
23 |
20 22
|
syl5ibrcom |
|
24 |
19 23
|
jaod |
|
25 |
15 24
|
impbid |
|