Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Initial properties of the complex numbers
mul12
Next ⟩
mul32
Metamath Proof Explorer
Ascii
Unicode
Theorem
mul12
Description:
Commutative/associative law for multiplication.
(Contributed by
NM
, 30-Apr-2005)
Ref
Expression
Assertion
mul12
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
B
⁢
A
⁢
C
Proof
Step
Hyp
Ref
Expression
1
mulcom
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
⁢
B
=
B
⁢
A
2
1
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
⁢
B
⁢
C
=
B
⁢
A
⁢
C
3
2
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
B
⁢
A
⁢
C
4
mulass
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
A
⁢
B
⁢
C
5
mulass
⊢
B
∈
ℂ
∧
A
∈
ℂ
∧
C
∈
ℂ
→
B
⁢
A
⁢
C
=
B
⁢
A
⁢
C
6
5
3com12
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
⁢
A
⁢
C
=
B
⁢
A
⁢
C
7
3
4
6
3eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
B
⁢
A
⁢
C