Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Initial properties of the complex numbers
mul12i
Metamath Proof Explorer
Description: Commutative/associative law that swaps the first two factors in a triple
product. (Contributed by NM , 11-May-1999) (Proof shortened by Andrew
Salmon , 19-Nov-2011)
Ref
Expression
Hypotheses
mul.1
⊢ A ∈ ℂ
mul.2
⊢ B ∈ ℂ
mul.3
⊢ C ∈ ℂ
Assertion
mul12i
⊢ A ⁢ B ⁢ C = B ⁢ A ⁢ C
Proof
Step
Hyp
Ref
Expression
1
mul.1
⊢ A ∈ ℂ
2
mul.2
⊢ B ∈ ℂ
3
mul.3
⊢ C ∈ ℂ
4
mul12
⊢ A ∈ ℂ ∧ B ∈ ℂ ∧ C ∈ ℂ → A ⁢ B ⁢ C = B ⁢ A ⁢ C
5
1 2 3 4
mp3an
⊢ A ⁢ B ⁢ C = B ⁢ A ⁢ C