Metamath Proof Explorer


Theorem mul13d

Description: Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses mul13d.1 φ A
mul13d.2 φ B
mul13d.3 φ C
Assertion mul13d φ A B C = C B A

Proof

Step Hyp Ref Expression
1 mul13d.1 φ A
2 mul13d.2 φ B
3 mul13d.3 φ C
4 1 2 3 mul12d φ A B C = B A C
5 2 1 3 mulassd φ B A C = B A C
6 2 1 mulcld φ B A
7 6 3 mulcomd φ B A C = C B A
8 4 5 7 3eqtr2d φ A B C = C B A