Step |
Hyp |
Ref |
Expression |
1 |
|
mul2lt0.1 |
|
2 |
|
mul2lt0.2 |
|
3 |
1 2
|
remulcld |
|
4 |
|
0red |
|
5 |
3 4
|
ltnled |
|
6 |
1
|
adantr |
|
7 |
2
|
adantr |
|
8 |
|
simprl |
|
9 |
|
simprr |
|
10 |
6 7 8 9
|
mulge0d |
|
11 |
10
|
ex |
|
12 |
11
|
con3d |
|
13 |
5 12
|
sylbid |
|
14 |
|
ianor |
|
15 |
13 14
|
syl6ib |
|
16 |
1 4
|
ltnled |
|
17 |
2 4
|
ltnled |
|
18 |
16 17
|
orbi12d |
|
19 |
15 18
|
sylibrd |
|
20 |
19
|
imp |
|
21 |
|
simpr |
|
22 |
1
|
adantr |
|
23 |
2
|
adantr |
|
24 |
|
simpr |
|
25 |
22 23 24
|
mul2lt0llt0 |
|
26 |
21 25
|
jca |
|
27 |
26
|
ex |
|
28 |
22 23 24
|
mul2lt0rlt0 |
|
29 |
|
simpr |
|
30 |
28 29
|
jca |
|
31 |
30
|
ex |
|
32 |
27 31
|
orim12d |
|
33 |
20 32
|
mpd |
|
34 |
1
|
adantr |
|
35 |
|
0red |
|
36 |
2
|
adantr |
|
37 |
|
simprr |
|
38 |
36 37
|
elrpd |
|
39 |
|
simprl |
|
40 |
34 35 38 39
|
ltmul1dd |
|
41 |
36
|
recnd |
|
42 |
41
|
mul02d |
|
43 |
40 42
|
breqtrd |
|
44 |
2
|
adantr |
|
45 |
|
0red |
|
46 |
1
|
adantr |
|
47 |
|
simprl |
|
48 |
46 47
|
elrpd |
|
49 |
|
simprr |
|
50 |
44 45 48 49
|
ltmul2dd |
|
51 |
46
|
recnd |
|
52 |
51
|
mul01d |
|
53 |
50 52
|
breqtrd |
|
54 |
43 53
|
jaodan |
|
55 |
33 54
|
impbida |
|