Database
REAL AND COMPLEX NUMBERS
Order sets
Positive reals (as a subset of complex numbers)
mul2lt0lgt0
Metamath Proof Explorer
Description: If the result of a multiplication is strictly negative, then
multiplicands are of different signs. (Contributed by Thierry Arnoux , 2-Oct-2018)
Ref
Expression
Hypotheses
mul2lt0.1
⊢ φ → A ∈ ℝ
mul2lt0.2
⊢ φ → B ∈ ℝ
mul2lt0.3
⊢ φ → A ⁢ B < 0
Assertion
mul2lt0lgt0
⊢ φ ∧ 0 < A → B < 0
Proof
Step
Hyp
Ref
Expression
1
mul2lt0.1
⊢ φ → A ∈ ℝ
2
mul2lt0.2
⊢ φ → B ∈ ℝ
3
mul2lt0.3
⊢ φ → A ⁢ B < 0
4
1
recnd
⊢ φ → A ∈ ℂ
5
2
recnd
⊢ φ → B ∈ ℂ
6
4 5
mulcomd
⊢ φ → A ⁢ B = B ⁢ A
7
6 3
eqbrtrrd
⊢ φ → B ⁢ A < 0
8
2 1 7
mul2lt0rgt0
⊢ φ ∧ 0 < A → B < 0