Metamath Proof Explorer


Theorem mul2lt0lgt0

Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 2-Oct-2018)

Ref Expression
Hypotheses mul2lt0.1 φ A
mul2lt0.2 φ B
mul2lt0.3 φ A B < 0
Assertion mul2lt0lgt0 φ 0 < A B < 0

Proof

Step Hyp Ref Expression
1 mul2lt0.1 φ A
2 mul2lt0.2 φ B
3 mul2lt0.3 φ A B < 0
4 1 recnd φ A
5 2 recnd φ B
6 4 5 mulcomd φ A B = B A
7 6 3 eqbrtrrd φ B A < 0
8 2 1 7 mul2lt0rgt0 φ 0 < A B < 0