Metamath Proof Explorer


Theorem mul2lt0llt0

Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)

Ref Expression
Hypotheses mul2lt0.1 φ A
mul2lt0.2 φ B
mul2lt0.3 φ A B < 0
Assertion mul2lt0llt0 φ A < 0 0 < B

Proof

Step Hyp Ref Expression
1 mul2lt0.1 φ A
2 mul2lt0.2 φ B
3 mul2lt0.3 φ A B < 0
4 1 recnd φ A
5 2 recnd φ B
6 4 5 mulcomd φ A B = B A
7 6 3 eqbrtrrd φ B A < 0
8 2 1 7 mul2lt0rlt0 φ A < 0 0 < B