Metamath Proof Explorer


Theorem mul2lt0rgt0

Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)

Ref Expression
Hypotheses mul2lt0.1 φ A
mul2lt0.2 φ B
mul2lt0.3 φ A B < 0
Assertion mul2lt0rgt0 φ 0 < B A < 0

Proof

Step Hyp Ref Expression
1 mul2lt0.1 φ A
2 mul2lt0.2 φ B
3 mul2lt0.3 φ A B < 0
4 3 adantr φ 0 < B A B < 0
5 2 adantr φ 0 < B B
6 5 recnd φ 0 < B B
7 6 mul02d φ 0 < B 0 B = 0
8 4 7 breqtrrd φ 0 < B A B < 0 B
9 1 adantr φ 0 < B A
10 0red φ 0 < B 0
11 simpr φ 0 < B 0 < B
12 5 11 elrpd φ 0 < B B +
13 9 10 12 ltmul1d φ 0 < B A < 0 A B < 0 B
14 8 13 mpbird φ 0 < B A < 0