Metamath Proof Explorer


Theorem mul2lt0rlt0

Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)

Ref Expression
Hypotheses mul2lt0.1 φ A
mul2lt0.2 φ B
mul2lt0.3 φ A B < 0
Assertion mul2lt0rlt0 φ B < 0 0 < A

Proof

Step Hyp Ref Expression
1 mul2lt0.1 φ A
2 mul2lt0.2 φ B
3 mul2lt0.3 φ A B < 0
4 1 2 remulcld φ A B
5 4 adantr φ B < 0 A B
6 0red φ B < 0 0
7 negelrp B B + B < 0
8 2 7 syl φ B + B < 0
9 8 biimpar φ B < 0 B +
10 3 adantr φ B < 0 A B < 0
11 5 6 9 10 ltdiv1dd φ B < 0 A B B < 0 B
12 1 recnd φ A
13 12 adantr φ B < 0 A
14 2 recnd φ B
15 14 adantr φ B < 0 B
16 13 15 mulcld φ B < 0 A B
17 simpr φ B < 0 B < 0
18 17 lt0ne0d φ B < 0 B 0
19 16 15 18 divneg2d φ B < 0 A B B = A B B
20 13 15 18 divcan4d φ B < 0 A B B = A
21 20 negeqd φ B < 0 A B B = A
22 19 21 eqtr3d φ B < 0 A B B = A
23 15 negcld φ B < 0 B
24 15 18 negne0d φ B < 0 B 0
25 23 24 div0d φ B < 0 0 B = 0
26 11 22 25 3brtr3d φ B < 0 A < 0
27 1 adantr φ B < 0 A
28 27 lt0neg2d φ B < 0 0 < A A < 0
29 26 28 mpbird φ B < 0 0 < A