Metamath Proof Explorer


Theorem mul2negsd

Description: Surreal product of two negatives. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Hypotheses mulnegs1d.1 φ A No
mulnegs1d.2 φ B No
Assertion mul2negsd φ + s A s + s B = A s B

Proof

Step Hyp Ref Expression
1 mulnegs1d.1 φ A No
2 mulnegs1d.2 φ B No
3 2 negscld φ + s B No
4 1 3 mulnegs1d φ + s A s + s B = + s A s + s B
5 1 2 mulnegs2d φ A s + s B = + s A s B
6 5 fveq2d φ + s A s + s B = + s + s A s B
7 1 2 mulscld φ A s B No
8 negnegs A s B No + s + s A s B = A s B
9 7 8 syl φ + s + s A s B = A s B
10 4 6 9 3eqtrd φ + s A s + s B = A s B