Metamath Proof Explorer


Theorem mul2negsd

Description: Surreal product of two negatives. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Hypotheses mulnegs1d.1 φANo
mulnegs1d.2 φBNo
Assertion mul2negsd φ+sAs+sB=AsB

Proof

Step Hyp Ref Expression
1 mulnegs1d.1 φANo
2 mulnegs1d.2 φBNo
3 2 negscld φ+sBNo
4 1 3 mulnegs1d φ+sAs+sB=+sAs+sB
5 1 2 mulnegs2d φAs+sB=+sAsB
6 5 fveq2d φ+sAs+sB=+s+sAsB
7 1 2 mulscld φAsBNo
8 negnegs AsBNo+s+sAsB=AsB
9 7 8 syl φ+s+sAsB=AsB
10 4 6 9 3eqtrd φ+sAs+sB=AsB