Metamath Proof Explorer


Theorem mul31

Description: Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion mul31 A B C A B C = C B A

Proof

Step Hyp Ref Expression
1 mulcom B C B C = C B
2 1 oveq2d B C A B C = A C B
3 2 3adant1 A B C A B C = A C B
4 mulass A B C A B C = A B C
5 mulcl C B C B
6 5 ancoms B C C B
7 6 3adant1 A B C C B
8 simp1 A B C A
9 7 8 mulcomd A B C C B A = A C B
10 3 4 9 3eqtr4d A B C A B C = C B A