Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Initial properties of the complex numbers
mul31
Next ⟩
mul4
Metamath Proof Explorer
Ascii
Unicode
Theorem
mul31
Description:
Commutative/associative law.
(Contributed by
Scott Fenton
, 3-Jan-2013)
Ref
Expression
Assertion
mul31
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
C
⁢
B
⁢
A
Proof
Step
Hyp
Ref
Expression
1
mulcom
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
B
⁢
C
=
C
⁢
B
2
1
oveq2d
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
A
⁢
C
⁢
B
3
2
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
A
⁢
C
⁢
B
4
mulass
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
A
⁢
B
⁢
C
5
mulcl
⊢
C
∈
ℂ
∧
B
∈
ℂ
→
C
⁢
B
∈
ℂ
6
5
ancoms
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
C
⁢
B
∈
ℂ
7
6
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
⁢
B
∈
ℂ
8
simp1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
∈
ℂ
9
7
8
mulcomd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
⁢
B
⁢
A
=
A
⁢
C
⁢
B
10
3
4
9
3eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
C
⁢
B
⁢
A