Metamath Proof Explorer


Theorem mul31d

Description: Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses muld.1 φ A
addcomd.2 φ B
addcand.3 φ C
Assertion mul31d φ A B C = C B A

Proof

Step Hyp Ref Expression
1 muld.1 φ A
2 addcomd.2 φ B
3 addcand.3 φ C
4 mul31 A B C A B C = C B A
5 1 2 3 4 syl3anc φ A B C = C B A