Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Initial properties of the complex numbers
mul31d
Next ⟩
mul4d
Metamath Proof Explorer
Ascii
Unicode
Theorem
mul31d
Description:
Commutative/associative law.
(Contributed by
Mario Carneiro
, 27-May-2016)
Ref
Expression
Hypotheses
muld.1
⊢
φ
→
A
∈
ℂ
addcomd.2
⊢
φ
→
B
∈
ℂ
addcand.3
⊢
φ
→
C
∈
ℂ
Assertion
mul31d
⊢
φ
→
A
⁢
B
⁢
C
=
C
⁢
B
⁢
A
Proof
Step
Hyp
Ref
Expression
1
muld.1
⊢
φ
→
A
∈
ℂ
2
addcomd.2
⊢
φ
→
B
∈
ℂ
3
addcand.3
⊢
φ
→
C
∈
ℂ
4
mul31
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
C
⁢
B
⁢
A
5
1
2
3
4
syl3anc
⊢
φ
→
A
⁢
B
⁢
C
=
C
⁢
B
⁢
A