Metamath Proof Explorer


Theorem mul32

Description: Commutative/associative law. (Contributed by NM, 8-Oct-1999)

Ref Expression
Assertion mul32 A B C A B C = A C B

Proof

Step Hyp Ref Expression
1 mulcom B C B C = C B
2 1 oveq2d B C A B C = A C B
3 2 3adant1 A B C A B C = A C B
4 mulass A B C A B C = A B C
5 mulass A C B A C B = A C B
6 5 3com23 A B C A C B = A C B
7 3 4 6 3eqtr4d A B C A B C = A C B