Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Initial properties of the complex numbers
mul32
Next ⟩
mul31
Metamath Proof Explorer
Ascii
Unicode
Theorem
mul32
Description:
Commutative/associative law.
(Contributed by
NM
, 8-Oct-1999)
Ref
Expression
Assertion
mul32
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
A
⁢
C
⁢
B
Proof
Step
Hyp
Ref
Expression
1
mulcom
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
B
⁢
C
=
C
⁢
B
2
1
oveq2d
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
A
⁢
C
⁢
B
3
2
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
A
⁢
C
⁢
B
4
mulass
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
A
⁢
B
⁢
C
5
mulass
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
→
A
⁢
C
⁢
B
=
A
⁢
C
⁢
B
6
5
3com23
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
C
⁢
B
=
A
⁢
C
⁢
B
7
3
4
6
3eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
A
⁢
C
⁢
B