Metamath Proof Explorer
Description: Commutative/associative law that swaps the last two factors in a triple
product. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
muld.1 |
|
|
|
addcomd.2 |
|
|
|
addcand.3 |
|
|
Assertion |
mul32d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
muld.1 |
|
2 |
|
addcomd.2 |
|
3 |
|
addcand.3 |
|
4 |
|
mul32 |
|
5 |
1 2 3 4
|
syl3anc |
|