Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Initial properties of the complex numbers
mul4
Next ⟩
mul4r
Metamath Proof Explorer
Ascii
Unicode
Theorem
mul4
Description:
Rearrangement of 4 factors.
(Contributed by
NM
, 8-Oct-1999)
Ref
Expression
Assertion
mul4
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
⁢
B
⁢
C
⁢
D
=
A
⁢
C
⁢
B
⁢
D
Proof
Step
Hyp
Ref
Expression
1
mul32
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
=
A
⁢
C
⁢
B
2
1
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
⁢
D
=
A
⁢
C
⁢
B
⁢
D
3
2
3expa
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
⁢
C
⁢
D
=
A
⁢
C
⁢
B
⁢
D
4
3
adantrr
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
⁢
B
⁢
C
⁢
D
=
A
⁢
C
⁢
B
⁢
D
5
mulcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
⁢
B
∈
ℂ
6
mulass
⊢
A
⁢
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
⁢
B
⁢
C
⁢
D
=
A
⁢
B
⁢
C
⁢
D
7
6
3expb
⊢
A
⁢
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
⁢
B
⁢
C
⁢
D
=
A
⁢
B
⁢
C
⁢
D
8
5
7
sylan
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
⁢
B
⁢
C
⁢
D
=
A
⁢
B
⁢
C
⁢
D
9
mulcl
⊢
A
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
C
∈
ℂ
10
mulass
⊢
A
⁢
C
∈
ℂ
∧
B
∈
ℂ
∧
D
∈
ℂ
→
A
⁢
C
⁢
B
⁢
D
=
A
⁢
C
⁢
B
⁢
D
11
10
3expb
⊢
A
⁢
C
∈
ℂ
∧
B
∈
ℂ
∧
D
∈
ℂ
→
A
⁢
C
⁢
B
⁢
D
=
A
⁢
C
⁢
B
⁢
D
12
9
11
sylan
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
∧
D
∈
ℂ
→
A
⁢
C
⁢
B
⁢
D
=
A
⁢
C
⁢
B
⁢
D
13
12
an4s
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
⁢
C
⁢
B
⁢
D
=
A
⁢
C
⁢
B
⁢
D
14
4
8
13
3eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
⁢
B
⁢
C
⁢
D
=
A
⁢
C
⁢
B
⁢
D