Metamath Proof Explorer


Theorem mul4

Description: Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999)

Ref Expression
Assertion mul4 A B C D A B C D = A C B D

Proof

Step Hyp Ref Expression
1 mul32 A B C A B C = A C B
2 1 oveq1d A B C A B C D = A C B D
3 2 3expa A B C A B C D = A C B D
4 3 adantrr A B C D A B C D = A C B D
5 mulcl A B A B
6 mulass A B C D A B C D = A B C D
7 6 3expb A B C D A B C D = A B C D
8 5 7 sylan A B C D A B C D = A B C D
9 mulcl A C A C
10 mulass A C B D A C B D = A C B D
11 10 3expb A C B D A C B D = A C B D
12 9 11 sylan A C B D A C B D = A C B D
13 12 an4s A B C D A C B D = A C B D
14 4 8 13 3eqtr3d A B C D A B C D = A C B D