Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
|
2 |
1
|
4sqlem4 |
|
3 |
1
|
4sqlem4 |
|
4 |
|
reeanv |
|
5 |
|
reeanv |
|
6 |
|
simpll |
|
7 |
|
gzabssqcl |
|
8 |
6 7
|
syl |
|
9 |
|
simprl |
|
10 |
|
gzabssqcl |
|
11 |
9 10
|
syl |
|
12 |
8 11
|
nn0addcld |
|
13 |
12
|
nn0cnd |
|
14 |
13
|
div1d |
|
15 |
|
simplr |
|
16 |
|
gzabssqcl |
|
17 |
15 16
|
syl |
|
18 |
|
simprr |
|
19 |
|
gzabssqcl |
|
20 |
18 19
|
syl |
|
21 |
17 20
|
nn0addcld |
|
22 |
21
|
nn0cnd |
|
23 |
22
|
div1d |
|
24 |
14 23
|
oveq12d |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
|
1nn |
|
28 |
27
|
a1i |
|
29 |
|
gzsubcl |
|
30 |
29
|
adantr |
|
31 |
|
gzcn |
|
32 |
30 31
|
syl |
|
33 |
32
|
div1d |
|
34 |
33 30
|
eqeltrd |
|
35 |
|
gzsubcl |
|
36 |
35
|
adantl |
|
37 |
|
gzcn |
|
38 |
36 37
|
syl |
|
39 |
38
|
div1d |
|
40 |
39 36
|
eqeltrd |
|
41 |
14 12
|
eqeltrd |
|
42 |
1 6 9 15 18 25 26 28 34 40 41
|
mul4sqlem |
|
43 |
24 42
|
eqeltrrd |
|
44 |
|
oveq12 |
|
45 |
44
|
eleq1d |
|
46 |
43 45
|
syl5ibrcom |
|
47 |
46
|
rexlimdvva |
|
48 |
5 47
|
syl5bir |
|
49 |
48
|
rexlimivv |
|
50 |
4 49
|
sylbir |
|
51 |
2 3 50
|
syl2anb |
|