Step |
Hyp |
Ref |
Expression |
1 |
|
addcl |
|
2 |
|
adddi |
|
3 |
2
|
3expb |
|
4 |
1 3
|
sylan |
|
5 |
|
adddir |
|
6 |
5
|
3expa |
|
7 |
6
|
adantrr |
|
8 |
|
adddir |
|
9 |
8
|
3expa |
|
10 |
9
|
adantrl |
|
11 |
7 10
|
oveq12d |
|
12 |
|
mulcl |
|
13 |
12
|
ad2ant2r |
|
14 |
|
mulcl |
|
15 |
14
|
ad2ant2lr |
|
16 |
|
mulcl |
|
17 |
|
mulcl |
|
18 |
|
addcl |
|
19 |
16 17 18
|
syl2an |
|
20 |
19
|
anandirs |
|
21 |
20
|
adantrl |
|
22 |
13 15 21
|
add32d |
|
23 |
|
mulcom |
|
24 |
23
|
ad2ant2l |
|
25 |
24
|
oveq2d |
|
26 |
16
|
ad2ant2rl |
|
27 |
17
|
ad2ant2l |
|
28 |
13 26 27
|
addassd |
|
29 |
|
mulcl |
|
30 |
29
|
ancoms |
|
31 |
30
|
ad2ant2l |
|
32 |
13 26 31
|
add32d |
|
33 |
25 28 32
|
3eqtr3d |
|
34 |
|
mulcom |
|
35 |
34
|
ad2ant2lr |
|
36 |
33 35
|
oveq12d |
|
37 |
|
addcl |
|
38 |
12 30 37
|
syl2an |
|
39 |
38
|
an4s |
|
40 |
|
mulcl |
|
41 |
40
|
ancoms |
|
42 |
41
|
ad2ant2lr |
|
43 |
39 26 42
|
addassd |
|
44 |
22 36 43
|
3eqtrd |
|
45 |
4 11 44
|
3eqtrd |
|