Metamath Proof Explorer


Theorem muladd11

Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005)

Ref Expression
Assertion muladd11 A B 1 + A 1 + B = 1 + A + B + A B

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 addcl 1 A 1 + A
3 1 2 mpan A 1 + A
4 adddi 1 + A 1 B 1 + A 1 + B = 1 + A 1 + 1 + A B
5 1 4 mp3an2 1 + A B 1 + A 1 + B = 1 + A 1 + 1 + A B
6 3 5 sylan A B 1 + A 1 + B = 1 + A 1 + 1 + A B
7 3 mulid1d A 1 + A 1 = 1 + A
8 7 adantr A B 1 + A 1 = 1 + A
9 adddir 1 A B 1 + A B = 1 B + A B
10 1 9 mp3an1 A B 1 + A B = 1 B + A B
11 mulid2 B 1 B = B
12 11 adantl A B 1 B = B
13 12 oveq1d A B 1 B + A B = B + A B
14 10 13 eqtrd A B 1 + A B = B + A B
15 8 14 oveq12d A B 1 + A 1 + 1 + A B = 1 + A + B + A B
16 6 15 eqtrd A B 1 + A 1 + B = 1 + A + B + A B