Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Initial properties of the complex numbers
muladd11
Next ⟩
1p1times
Metamath Proof Explorer
Ascii
Unicode
Theorem
muladd11
Description:
A simple product of sums expansion.
(Contributed by
NM
, 21-Feb-2005)
Ref
Expression
Assertion
muladd11
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
+
A
⁢
1
+
B
=
1
+
A
+
B
+
A
⁢
B
Proof
Step
Hyp
Ref
Expression
1
ax-1cn
⊢
1
∈
ℂ
2
addcl
⊢
1
∈
ℂ
∧
A
∈
ℂ
→
1
+
A
∈
ℂ
3
1
2
mpan
⊢
A
∈
ℂ
→
1
+
A
∈
ℂ
4
adddi
⊢
1
+
A
∈
ℂ
∧
1
∈
ℂ
∧
B
∈
ℂ
→
1
+
A
⁢
1
+
B
=
1
+
A
⋅
1
+
1
+
A
⁢
B
5
1
4
mp3an2
⊢
1
+
A
∈
ℂ
∧
B
∈
ℂ
→
1
+
A
⁢
1
+
B
=
1
+
A
⋅
1
+
1
+
A
⁢
B
6
3
5
sylan
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
+
A
⁢
1
+
B
=
1
+
A
⋅
1
+
1
+
A
⁢
B
7
3
mulid1d
⊢
A
∈
ℂ
→
1
+
A
⋅
1
=
1
+
A
8
7
adantr
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
+
A
⋅
1
=
1
+
A
9
adddir
⊢
1
∈
ℂ
∧
A
∈
ℂ
∧
B
∈
ℂ
→
1
+
A
⁢
B
=
1
⁢
B
+
A
⁢
B
10
1
9
mp3an1
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
+
A
⁢
B
=
1
⁢
B
+
A
⁢
B
11
mulid2
⊢
B
∈
ℂ
→
1
⁢
B
=
B
12
11
adantl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
⁢
B
=
B
13
12
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
⁢
B
+
A
⁢
B
=
B
+
A
⁢
B
14
10
13
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
+
A
⁢
B
=
B
+
A
⁢
B
15
8
14
oveq12d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
+
A
⋅
1
+
1
+
A
⁢
B
=
1
+
A
+
B
+
A
⁢
B
16
6
15
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
+
A
⁢
1
+
B
=
1
+
A
+
B
+
A
⁢
B