Metamath Proof Explorer


Theorem muladd11r

Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021)

Ref Expression
Assertion muladd11r A B A + 1 B + 1 = A B + A + B + 1

Proof

Step Hyp Ref Expression
1 simpl A B A
2 1cnd A B 1
3 1 2 addcomd A B A + 1 = 1 + A
4 simpr A B B
5 4 2 addcomd A B B + 1 = 1 + B
6 3 5 oveq12d A B A + 1 B + 1 = 1 + A 1 + B
7 muladd11 A B 1 + A 1 + B = 1 + A + B + A B
8 mulcl A B A B
9 4 8 addcld A B B + A B
10 2 1 9 addassd A B 1 + A + B + A B = 1 + A + B + A B
11 1 9 addcld A B A + B + A B
12 2 11 addcomd A B 1 + A + B + A B = A + B + A B + 1
13 1 4 8 addassd A B A + B + A B = A + B + A B
14 addcl A B A + B
15 14 8 addcomd A B A + B + A B = A B + A + B
16 13 15 eqtr3d A B A + B + A B = A B + A + B
17 16 oveq1d A B A + B + A B + 1 = A B + A + B + 1
18 10 12 17 3eqtrd A B 1 + A + B + A B = A B + A + B + 1
19 6 7 18 3eqtrd A B A + 1 B + 1 = A B + A + B + 1