Metamath Proof Explorer


Theorem muladdi

Description: Product of two sums. (Contributed by NM, 17-May-1999)

Ref Expression
Hypotheses mulm1.1 A
mulneg.2 B
subdi.3 C
muladdi.4 D
Assertion muladdi A + B C + D = A C + D B + A D + C B

Proof

Step Hyp Ref Expression
1 mulm1.1 A
2 mulneg.2 B
3 subdi.3 C
4 muladdi.4 D
5 muladd A B C D A + B C + D = A C + D B + A D + C B
6 1 2 3 4 5 mp4an A + B C + D = A C + D B + A D + C B