Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Multiplication
muladdi
Next ⟩
mulm1d
Metamath Proof Explorer
Ascii
Unicode
Theorem
muladdi
Description:
Product of two sums.
(Contributed by
NM
, 17-May-1999)
Ref
Expression
Hypotheses
mulm1.1
⊢
A
∈
ℂ
mulneg.2
⊢
B
∈
ℂ
subdi.3
⊢
C
∈
ℂ
muladdi.4
⊢
D
∈
ℂ
Assertion
muladdi
⊢
A
+
B
⁢
C
+
D
=
A
⁢
C
+
D
⁢
B
+
A
⁢
D
+
C
⁢
B
Proof
Step
Hyp
Ref
Expression
1
mulm1.1
⊢
A
∈
ℂ
2
mulneg.2
⊢
B
∈
ℂ
3
subdi.3
⊢
C
∈
ℂ
4
muladdi.4
⊢
D
∈
ℂ
5
muladd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
⁢
C
+
D
=
A
⁢
C
+
D
⁢
B
+
A
⁢
D
+
C
⁢
B
6
1
2
3
4
5
mp4an
⊢
A
+
B
⁢
C
+
D
=
A
⁢
C
+
D
⁢
B
+
A
⁢
D
+
C
⁢
B