Metamath Proof Explorer


Theorem mulassd

Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addcld.1 φ A
addcld.2 φ B
addassd.3 φ C
Assertion mulassd φ A B C = A B C

Proof

Step Hyp Ref Expression
1 addcld.1 φ A
2 addcld.2 φ B
3 addassd.3 φ C
4 mulass A B C A B C = A B C
5 1 2 3 4 syl3anc φ A B C = A B C