Metamath Proof Explorer


Theorem mulassnq

Description: Multiplication of positive fractions is associative. (Contributed by NM, 1-Sep-1995) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion mulassnq A 𝑸 B 𝑸 C = A 𝑸 B 𝑸 C

Proof

Step Hyp Ref Expression
1 mulasspi 1 st A 𝑵 1 st B 𝑵 1 st C = 1 st A 𝑵 1 st B 𝑵 1 st C
2 mulasspi 2 nd A 𝑵 2 nd B 𝑵 2 nd C = 2 nd A 𝑵 2 nd B 𝑵 2 nd C
3 1 2 opeq12i 1 st A 𝑵 1 st B 𝑵 1 st C 2 nd A 𝑵 2 nd B 𝑵 2 nd C = 1 st A 𝑵 1 st B 𝑵 1 st C 2 nd A 𝑵 2 nd B 𝑵 2 nd C
4 elpqn A 𝑸 A 𝑵 × 𝑵
5 4 3ad2ant1 A 𝑸 B 𝑸 C 𝑸 A 𝑵 × 𝑵
6 elpqn B 𝑸 B 𝑵 × 𝑵
7 6 3ad2ant2 A 𝑸 B 𝑸 C 𝑸 B 𝑵 × 𝑵
8 mulpipq2 A 𝑵 × 𝑵 B 𝑵 × 𝑵 A 𝑝𝑸 B = 1 st A 𝑵 1 st B 2 nd A 𝑵 2 nd B
9 5 7 8 syl2anc A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B = 1 st A 𝑵 1 st B 2 nd A 𝑵 2 nd B
10 relxp Rel 𝑵 × 𝑵
11 elpqn C 𝑸 C 𝑵 × 𝑵
12 11 3ad2ant3 A 𝑸 B 𝑸 C 𝑸 C 𝑵 × 𝑵
13 1st2nd Rel 𝑵 × 𝑵 C 𝑵 × 𝑵 C = 1 st C 2 nd C
14 10 12 13 sylancr A 𝑸 B 𝑸 C 𝑸 C = 1 st C 2 nd C
15 9 14 oveq12d A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B 𝑝𝑸 C = 1 st A 𝑵 1 st B 2 nd A 𝑵 2 nd B 𝑝𝑸 1 st C 2 nd C
16 xp1st A 𝑵 × 𝑵 1 st A 𝑵
17 5 16 syl A 𝑸 B 𝑸 C 𝑸 1 st A 𝑵
18 xp1st B 𝑵 × 𝑵 1 st B 𝑵
19 7 18 syl A 𝑸 B 𝑸 C 𝑸 1 st B 𝑵
20 mulclpi 1 st A 𝑵 1 st B 𝑵 1 st A 𝑵 1 st B 𝑵
21 17 19 20 syl2anc A 𝑸 B 𝑸 C 𝑸 1 st A 𝑵 1 st B 𝑵
22 xp2nd A 𝑵 × 𝑵 2 nd A 𝑵
23 5 22 syl A 𝑸 B 𝑸 C 𝑸 2 nd A 𝑵
24 xp2nd B 𝑵 × 𝑵 2 nd B 𝑵
25 7 24 syl A 𝑸 B 𝑸 C 𝑸 2 nd B 𝑵
26 mulclpi 2 nd A 𝑵 2 nd B 𝑵 2 nd A 𝑵 2 nd B 𝑵
27 23 25 26 syl2anc A 𝑸 B 𝑸 C 𝑸 2 nd A 𝑵 2 nd B 𝑵
28 xp1st C 𝑵 × 𝑵 1 st C 𝑵
29 12 28 syl A 𝑸 B 𝑸 C 𝑸 1 st C 𝑵
30 xp2nd C 𝑵 × 𝑵 2 nd C 𝑵
31 12 30 syl A 𝑸 B 𝑸 C 𝑸 2 nd C 𝑵
32 mulpipq 1 st A 𝑵 1 st B 𝑵 2 nd A 𝑵 2 nd B 𝑵 1 st C 𝑵 2 nd C 𝑵 1 st A 𝑵 1 st B 2 nd A 𝑵 2 nd B 𝑝𝑸 1 st C 2 nd C = 1 st A 𝑵 1 st B 𝑵 1 st C 2 nd A 𝑵 2 nd B 𝑵 2 nd C
33 21 27 29 31 32 syl22anc A 𝑸 B 𝑸 C 𝑸 1 st A 𝑵 1 st B 2 nd A 𝑵 2 nd B 𝑝𝑸 1 st C 2 nd C = 1 st A 𝑵 1 st B 𝑵 1 st C 2 nd A 𝑵 2 nd B 𝑵 2 nd C
34 15 33 eqtrd A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B 𝑝𝑸 C = 1 st A 𝑵 1 st B 𝑵 1 st C 2 nd A 𝑵 2 nd B 𝑵 2 nd C
35 1st2nd Rel 𝑵 × 𝑵 A 𝑵 × 𝑵 A = 1 st A 2 nd A
36 10 5 35 sylancr A 𝑸 B 𝑸 C 𝑸 A = 1 st A 2 nd A
37 mulpipq2 B 𝑵 × 𝑵 C 𝑵 × 𝑵 B 𝑝𝑸 C = 1 st B 𝑵 1 st C 2 nd B 𝑵 2 nd C
38 7 12 37 syl2anc A 𝑸 B 𝑸 C 𝑸 B 𝑝𝑸 C = 1 st B 𝑵 1 st C 2 nd B 𝑵 2 nd C
39 36 38 oveq12d A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B 𝑝𝑸 C = 1 st A 2 nd A 𝑝𝑸 1 st B 𝑵 1 st C 2 nd B 𝑵 2 nd C
40 mulclpi 1 st B 𝑵 1 st C 𝑵 1 st B 𝑵 1 st C 𝑵
41 19 29 40 syl2anc A 𝑸 B 𝑸 C 𝑸 1 st B 𝑵 1 st C 𝑵
42 mulclpi 2 nd B 𝑵 2 nd C 𝑵 2 nd B 𝑵 2 nd C 𝑵
43 25 31 42 syl2anc A 𝑸 B 𝑸 C 𝑸 2 nd B 𝑵 2 nd C 𝑵
44 mulpipq 1 st A 𝑵 2 nd A 𝑵 1 st B 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd C 𝑵 1 st A 2 nd A 𝑝𝑸 1 st B 𝑵 1 st C 2 nd B 𝑵 2 nd C = 1 st A 𝑵 1 st B 𝑵 1 st C 2 nd A 𝑵 2 nd B 𝑵 2 nd C
45 17 23 41 43 44 syl22anc A 𝑸 B 𝑸 C 𝑸 1 st A 2 nd A 𝑝𝑸 1 st B 𝑵 1 st C 2 nd B 𝑵 2 nd C = 1 st A 𝑵 1 st B 𝑵 1 st C 2 nd A 𝑵 2 nd B 𝑵 2 nd C
46 39 45 eqtrd A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B 𝑝𝑸 C = 1 st A 𝑵 1 st B 𝑵 1 st C 2 nd A 𝑵 2 nd B 𝑵 2 nd C
47 3 34 46 3eqtr4a A 𝑸 B 𝑸 C 𝑸 A 𝑝𝑸 B 𝑝𝑸 C = A 𝑝𝑸 B 𝑝𝑸 C
48 47 fveq2d A 𝑸 B 𝑸 C 𝑸 / 𝑸 A 𝑝𝑸 B 𝑝𝑸 C = / 𝑸 A 𝑝𝑸 B 𝑝𝑸 C
49 mulerpq / 𝑸 A 𝑝𝑸 B 𝑸 / 𝑸 C = / 𝑸 A 𝑝𝑸 B 𝑝𝑸 C
50 mulerpq / 𝑸 A 𝑸 / 𝑸 B 𝑝𝑸 C = / 𝑸 A 𝑝𝑸 B 𝑝𝑸 C
51 48 49 50 3eqtr4g A 𝑸 B 𝑸 C 𝑸 / 𝑸 A 𝑝𝑸 B 𝑸 / 𝑸 C = / 𝑸 A 𝑸 / 𝑸 B 𝑝𝑸 C
52 mulpqnq A 𝑸 B 𝑸 A 𝑸 B = / 𝑸 A 𝑝𝑸 B
53 52 3adant3 A 𝑸 B 𝑸 C 𝑸 A 𝑸 B = / 𝑸 A 𝑝𝑸 B
54 nqerid C 𝑸 / 𝑸 C = C
55 54 eqcomd C 𝑸 C = / 𝑸 C
56 55 3ad2ant3 A 𝑸 B 𝑸 C 𝑸 C = / 𝑸 C
57 53 56 oveq12d A 𝑸 B 𝑸 C 𝑸 A 𝑸 B 𝑸 C = / 𝑸 A 𝑝𝑸 B 𝑸 / 𝑸 C
58 nqerid A 𝑸 / 𝑸 A = A
59 58 eqcomd A 𝑸 A = / 𝑸 A
60 59 3ad2ant1 A 𝑸 B 𝑸 C 𝑸 A = / 𝑸 A
61 mulpqnq B 𝑸 C 𝑸 B 𝑸 C = / 𝑸 B 𝑝𝑸 C
62 61 3adant1 A 𝑸 B 𝑸 C 𝑸 B 𝑸 C = / 𝑸 B 𝑝𝑸 C
63 60 62 oveq12d A 𝑸 B 𝑸 C 𝑸 A 𝑸 B 𝑸 C = / 𝑸 A 𝑸 / 𝑸 B 𝑝𝑸 C
64 51 57 63 3eqtr4d A 𝑸 B 𝑸 C 𝑸 A 𝑸 B 𝑸 C = A 𝑸 B 𝑸 C
65 mulnqf 𝑸 : 𝑸 × 𝑸 𝑸
66 65 fdmi dom 𝑸 = 𝑸 × 𝑸
67 0nnq ¬ 𝑸
68 66 67 ndmovass ¬ A 𝑸 B 𝑸 C 𝑸 A 𝑸 B 𝑸 C = A 𝑸 B 𝑸 C
69 64 68 pm2.61i A 𝑸 B 𝑸 C = A 𝑸 B 𝑸 C