Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
mulbinom2
Next ⟩
binom3
Metamath Proof Explorer
Ascii
Unicode
Theorem
mulbinom2
Description:
The square of a binomial with factor.
(Contributed by
AV
, 19-Jul-2021)
Ref
Expression
Assertion
mulbinom2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
⁢
A
+
B
2
=
C
⁢
A
2
+
2
⁢
C
⁢
A
⁢
B
+
B
2
Proof
Step
Hyp
Ref
Expression
1
mulcl
⊢
C
∈
ℂ
∧
A
∈
ℂ
→
C
⁢
A
∈
ℂ
2
1
ancoms
⊢
A
∈
ℂ
∧
C
∈
ℂ
→
C
⁢
A
∈
ℂ
3
2
3adant2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
⁢
A
∈
ℂ
4
simp2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
∈
ℂ
5
binom2
⊢
C
⁢
A
∈
ℂ
∧
B
∈
ℂ
→
C
⁢
A
+
B
2
=
C
⁢
A
2
+
2
⁢
C
⁢
A
⁢
B
+
B
2
6
3
4
5
syl2anc
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
⁢
A
+
B
2
=
C
⁢
A
2
+
2
⁢
C
⁢
A
⁢
B
+
B
2
7
mulass
⊢
C
∈
ℂ
∧
A
∈
ℂ
∧
B
∈
ℂ
→
C
⁢
A
⁢
B
=
C
⁢
A
⁢
B
8
7
3coml
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
⁢
A
⁢
B
=
C
⁢
A
⁢
B
9
8
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
2
⁢
C
⁢
A
⁢
B
=
2
⁢
C
⁢
A
⁢
B
10
2cnd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
2
∈
ℂ
11
simp3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
∈
ℂ
12
mulcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
⁢
B
∈
ℂ
13
12
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
∈
ℂ
14
10
11
13
mulassd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
2
⁢
C
⁢
A
⁢
B
=
2
⁢
C
⁢
A
⁢
B
15
9
14
eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
2
⁢
C
⁢
A
⁢
B
=
2
⁢
C
⁢
A
⁢
B
16
15
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
⁢
A
2
+
2
⁢
C
⁢
A
⁢
B
=
C
⁢
A
2
+
2
⁢
C
⁢
A
⁢
B
17
16
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
⁢
A
2
+
2
⁢
C
⁢
A
⁢
B
+
B
2
=
C
⁢
A
2
+
2
⁢
C
⁢
A
⁢
B
+
B
2
18
6
17
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
⁢
A
+
B
2
=
C
⁢
A
2
+
2
⁢
C
⁢
A
⁢
B
+
B
2