Metamath Proof Explorer


Theorem mulbinom2

Description: The square of a binomial with factor. (Contributed by AV, 19-Jul-2021)

Ref Expression
Assertion mulbinom2 A B C C A + B 2 = C A 2 + 2 C A B + B 2

Proof

Step Hyp Ref Expression
1 mulcl C A C A
2 1 ancoms A C C A
3 2 3adant2 A B C C A
4 simp2 A B C B
5 binom2 C A B C A + B 2 = C A 2 + 2 C A B + B 2
6 3 4 5 syl2anc A B C C A + B 2 = C A 2 + 2 C A B + B 2
7 mulass C A B C A B = C A B
8 7 3coml A B C C A B = C A B
9 8 oveq2d A B C 2 C A B = 2 C A B
10 2cnd A B C 2
11 simp3 A B C C
12 mulcl A B A B
13 12 3adant3 A B C A B
14 10 11 13 mulassd A B C 2 C A B = 2 C A B
15 9 14 eqtr4d A B C 2 C A B = 2 C A B
16 15 oveq2d A B C C A 2 + 2 C A B = C A 2 + 2 C A B
17 16 oveq1d A B C C A 2 + 2 C A B + B 2 = C A 2 + 2 C A B + B 2
18 6 17 eqtrd A B C C A + B 2 = C A 2 + 2 C A B + B 2